Morphological Changes Leading to the Nonculturable State

  • Jeffrey J. Byrd


Specific morphological changes occur when bacterial cells are introduced into nutrient-depleted environments. In addition, bacteria that are indigenous to these conditions tend to be smaller than bacteria found in nutrient-rich environments. Changes in bacterial morphology during starvation-survival have been previously reviewed (45, 61). The conditions under which bacteria alter their morphology are discussed, with reasons for the changes suggested.


Marine Bacterium Rhizobium Leguminosarum Nutrient Starvation Carbon Starvation Amino Acid Starvation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albertson, N. H., G. W. Jones, and S. Kjelleberg. 1987. The detection of starvation-specific antigens of two marine bacteria. J. Gen. Microbiol. 133:2225–2232.Google Scholar
  2. 2.
    Aldea, M., T. Garrido, C. Hernandez-Chico, M. Vicente, and S. R. Kushner. 1989. Induction of growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene. EMBO J. 8:3923–3931.PubMedGoogle Scholar
  3. 3.
    Aldea, M., C. Hernandez-Chico, A. G. de la Campa, S. R. Kushner, and M. Vicente. 1988. Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J. Bacteriol. 170:5169–5176.PubMedGoogle Scholar
  4. 4.
    Ammerman, J. W., J. A. Fuhrman, A. Hagstrom, and F. Azam. 1984. Bacterioplankton growth in seawater. I. Growth kinetics and cellular characteristics in seawater cultures. Mar. Ecol. Prog. Ser. 18:31–39.CrossRefGoogle Scholar
  5. 5.
    Amy, P. S., C. Durham, D. Hall, and L. Haldeman. 1993. Starvation-survival of deep subsurface isolates. Curr. Microbiol. 26:345–352.CrossRefGoogle Scholar
  6. 6.
    Amy, P. S., and R. Y. Morita. 1983. Starvation-survival patterns of sixteen freshly isolated openocean bacteria. Appl. Environ. Microbiol. 45:1109–1115.PubMedGoogle Scholar
  7. 7.
    Amy, P. S., C. Pauling, and R. Y. Morita. 1983. Recovery from nutrient starvation by a marine Vibrio sp. Appl. Environ. Microbiol. 45:1685–1690.PubMedGoogle Scholar
  8. 8.
    Amy, P. S., C. Pauling, and R. Y. Morita. 1983. Starvation-survival processes of a marine vibrio. Appl. Environ. Microbiol. 45:1041–1048.PubMedGoogle Scholar
  9. 9.
    Anderson, J. I. W., and W. P. Heffernan. 1965. Isolation and characterization of filterable marine bacteria. J. Bacteriol. 90:1713–1718.PubMedGoogle Scholar
  10. 10.
    Andersson, A., U. Larsson, and A. Hagstrom. 1986. Size-selective grazing by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser. 33:51–57.CrossRefGoogle Scholar
  11. 11.
    Bae, H. C., E. H. Cota-Robles, and L. E. Casida, Jr. 1972. Microflora of soil as viewed by transmission electron microscopy. Appl. Microbiol. 23:637–648.PubMedGoogle Scholar
  12. 12.
    Baker, R. M., F. L. Singleton, and M. A. Hood. 1983. Effects of nutrient deprivation of Vibrio cholerae. Appl. Environ. Microbiol. 46:930–940.PubMedGoogle Scholar
  13. 13.
    Bakhrouf, A., M. Jeddi, A. Bouddabous, and M. J. Gauthier. 1989. Evolution of Pseudomonas aeruginosa cells towards a filterable stage in seawater. FEMS Microbiol. Lett. 59:187–190.CrossRefGoogle Scholar
  14. 14.
    Bakken, L. R., and R. A. Olsen. 1987. The relationship between cell size and viability of soil bacteria. Microb. Ecol. 13:103–114.CrossRefGoogle Scholar
  15. 15.
    Beumer, R. R., J. de Vries, and F. M. Rombouts. 1992. Campylobacter jejuni nonculturable coccoid cells. Int. J. Food Microbiol. 15:153–163.PubMedCrossRefGoogle Scholar
  16. 16.
    Boylen, C. W. 1973. Survival of Arthrobacter crystallopoietes during prolonged periods of extreme dessication. J. Bacteriol. 113:33–37.PubMedGoogle Scholar
  17. 17.
    Boylen, C. W., and M. H. Mulks. 1978. The survival of coryneform bacteria during periods of prolonged nutrient starvation. J. Gen. Microbiol. 105:323–334.Google Scholar
  18. 18.
    Boylen, C. W., and J. L. Pate. 1973. Fine structure of Arthrobacter crystallopoietes during longterm starvation of rod and spherical stage cells. Can. J. Microbiol. 19:1–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Buchanan, C. E., and M. O. Sowell. 1982. Synthesis of penicillin-binding protein 6 by stationaryphase Escherichia coli. J. Bacteriol. 151:491–494.PubMedGoogle Scholar
  20. 20.
    Byrd, J. J., H.-S. Xu, and R. R. Colwell. 1993. Viable but nonculturable bacteria in drinking water. Appl. Environ. Microbiol. 57:875–878.Google Scholar
  21. 21.
    Byrd, J. J., L. R. Zeph, and L. E. Casida, Jr. 1985. Bacterial control of Agromyces ramosus in soil. Can. J. Microbiol. 31:1157–1163.CrossRefGoogle Scholar
  22. 22.
    Casida, L. E., Jr. 1965. Abundant microorganisms in soil. Appl. Microbiol. 13:327–334.PubMedGoogle Scholar
  23. 23.
    Casida, L. E., Jr. 1971. Microorganisms in unamended soil as observed by various forms of microscopy and staining. Appl. Microbiol. 21:1040–1045.PubMedGoogle Scholar
  24. 24.
    Casida, L. E., Jr. 1977. Small cells in pure cultures of Agromyces ramosus and in natural soil. Can. J. Microbiol. 23:214–216.PubMedCrossRefGoogle Scholar
  25. 25.
    Chrzanowski, T. H., and K. Simek. 1990. Prey-size selection by freshwater flagellated protozoa. Limnol. Oceanogr. 35:1429–1436.CrossRefGoogle Scholar
  26. 26.
    Conn, H. J. 1948. The most abundant groups of bacteria in soil. Bacteriol. Rev. 12:257–273.Google Scholar
  27. 27.
    Cusack, F., S. Singh, C. McCarthy, J. Grieco, M. de Rocco, D. Nguyen, H. Lappin-Scott, and J. W. Costerton. 1992. Enhanced oil recovery—three-dimensional sandpack simulation of ultramicrobacteria resuscitation in reservoir formation. J. Gen. Microbiol. 138:647–655.Google Scholar
  28. 28.
    Daley, R. J., and J. E. Hobbie. 1975. Direct count of aquatic bacteria by a modified epifluorescent technique. Limnol. Oceanogr. 20:875–881.CrossRefGoogle Scholar
  29. 29.
    Eberl, L., M. Givskov, C. Sternberg, S. Moller, G. Christiansen, and S. Molin. 1996. Physiological responses of Pseudomonas putida KT2442 to phosphate starvation. Microbiology 142:155–163.CrossRefGoogle Scholar
  30. 30.
    Faquin, W. C., and J. D. Oliver. 1984. Arginine uptake by a psychrophilic marine Vibrio sp. during starvation-induced morphogenesis. J. Gen. Microbiol. 130:1331–1335.Google Scholar
  31. 31.
    Fattom, A., and M. Shilo. 1985. Production of emulcyan by Phormidium J-1: its activity and function. FEMS Microbiol. Ecol. 31:3–9.CrossRefGoogle Scholar
  32. 32.
    Felter, R. A., R. R. Colwell, and G. B. Chapman. 1969. Morphology and round body formation in Vibrio marinus. J. Bacteriol. 99:326–335.PubMedGoogle Scholar
  33. 33.
    Gonzalez, J. M., E. B. Sheer, and B. F. Sheer. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56:583–589.PubMedGoogle Scholar
  34. 34.
    Grossman, N., and E. Z. Ron. 1989. Apparent minimal size required for cell division in Escherichia coli. J. Bacteriol. 171:80–82.PubMedGoogle Scholar
  35. 35.
    Grossman, N., E. Z. Ron, and C. L. Woldringh. 1982. Changes in cell dimension during amino acid starvation of Escherichia coli. J. Bacteriol. 152:35–41.PubMedGoogle Scholar
  36. 36.
    Hengge-Aronis, R., R. Lange, N. Henneberg, and D. Fischer. 1993. Osmotic regulation of rpoS-dependent genes in Escherichia coli. J. Bacteriol. 175:259–265.PubMedGoogle Scholar
  37. 37.
    Holmquist, L., and S. Kjelleberg. 1993. Changes in viability, respiratory activity and morphology of the marine Vibrio sp. strain S14 during starvation of individual nutrients and subsequent recovery. FEMS Microbiol. Ecol. 12:215–224.CrossRefGoogle Scholar
  38. 38.
    Holmquist, L., and S. Kjelleberg. 1993. The carbon starvation stimulon in the marine Vibrio sp. S14 (CCUG15956) includes three periplasmic space protein responders. J. Gen. Microbiol. 139:209–215.Google Scholar
  39. 39.
    Humphrey, B., S. Kjelleberg, and K. C. Marshall. 1983. Responses of marine bacteria under starvation conditions at a solid-water interface. Appl. Environ. Microbiol. 45:43–47.PubMedGoogle Scholar
  40. 40.
    Humphrey, B. A., and K. C. Marshall. 1984. The triggering effect of surfaces and surfactants on heat output, oxygen consumption and size reduction of a starving marine Vibrio. Arch. Microbiol. 140:166–170.PubMedCrossRefGoogle Scholar
  41. 41.
    James, G. A., D. R. Korber, D. E. Caldwell, and J. W. Costerton. 1995. Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J. Bacteriol. 177:907–915.PubMedGoogle Scholar
  42. 42.
    Jannasch, H. W. 1955. Zur Okologie ser zymogenen planktischen Bacterienflora naturlicher Gewasser. Arch. Mikrobiol. 23:146–180.PubMedCrossRefGoogle Scholar
  43. 43.
    Jannasch, H. W. 1958. Studies on planktonic bacteria by means of a direct membrane filter method. J. Gen. Microbiol. 18:609–620.PubMedGoogle Scholar
  44. 44.
    Kjelleberg, S., and M. Hermansson. 1984. Starvation-induced effects on bacterial surface characteristics. Appl. Environ. Microbiol. 48:497–503.PubMedGoogle Scholar
  45. 45.
    Kjelleberg, S., M. Hermansson, P. Marden, and G. W. Jones. 1987. The transient phase between growth and nongrowth of heterotrophic bacteria with emphasis on the marine environment. Annu. Rev. Microbiol. 41:25–49.PubMedCrossRefGoogle Scholar
  46. 46.
    Kjelleberg, S., B. A. Humphrey, and K. C. Marshall. 1982. Effect of interfaces on small, starved marine bacteria. Appl. Environ. Microbiol. 43:1166–1172.PubMedGoogle Scholar
  47. 47.
    Kjelleberg, S., B. A. Humphrey, and K. C. Marshall. 1983. Initial phases of starvation and activity of bacteria at surfaces. Appl. Environ. Microbiol. 46:978–984.PubMedGoogle Scholar
  48. 48.
    Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 24:415–420.CrossRefGoogle Scholar
  49. 49.
    Kurath, G., and R. Y. Morita. 1983. Starvation-survival physiological studies of a marine Pseudomonas sp. Appl. Environ. Microbiol. 45:1206–1211.PubMedGoogle Scholar
  50. 50.
    Kuuppo-Leinikki, P. 1990. Protozoan grazing on planktonic bacteria and its impact on bacterial population. Mar. Ecol. Prog. Ser. 63:227–238.CrossRefGoogle Scholar
  51. 51.
    Lange, R., and R. Hengge-Aronis. 1991. Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are regulated by the novel sigma factor σs. J. Bacteriol. 173:4474–4481.PubMedGoogle Scholar
  52. 52.
    Lange, R., and R. Hengge-Aronis. 1991. Identification of a central regulator of stationary-phase gene expression of Escherichia coli. Mol. Microbiol. 5:49–59.PubMedCrossRefGoogle Scholar
  53. 53.
    Lappin-Scott, H. M., F. M. Cusack, F. A. Macleod, and J. W. Costerton. 1988. Nutrient resuscitation and growth of starved cells in sandstone cores—a novel approach to enhance oil recovery. Appl. Environ. Microbiol. 54:1373–1382.PubMedGoogle Scholar
  54. 54.
    Lappin-Scott, H. M., F. M. Cusack, F. A. Macleod, and J. W. Costerton. 1988. Starvation and nutrient resuscitation of Klebsiella pneumoniae isolated from oil well waters. J. Appl. Bacteriol. 64: 541–550.PubMedCrossRefGoogle Scholar
  55. 55.
    Larsson, U., and A. Hagstrom. 1982. Fractionated phytoplankton primary production, exudate release, and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67:57–70.CrossRefGoogle Scholar
  56. 56.
    Lin, C. L., C. S. Lin, and S. T. Tan. 1995. Mutations showing specificity for normal growth or Mn(II)-dependent post-exponential-phase cell division in Deinococcus radiodurans. Microbiology 141:1707–1714.CrossRefGoogle Scholar
  57. 57.
    MacDonell, M. T., and M. A. Hood. 1982. Isolation and characterization of ultramicrobacteria from a Gulf Coast estuary. Appl. Environ. Microbiol. 43:556–571.Google Scholar
  58. 58.
    MacDonell, M. T., and M. A. Hood. 1984. Ultramicrovibrios in Gulf Coast estuarine water: isolation, characterization and incidence, p. 551–562. In R. R. Colwell (ed.), Vibrios in the Environment. John Wiley and Sons, Inc., New York, N.Y.Google Scholar
  59. 59.
    Marden, P., A. Tunlid, K. Malmcrona-Friberg, G. Odham, and S. Kjelleberg. 1985. Physiological and morphological changes during short term starvation of marine bacterial isolates. Arch. Microbiol. 142:326–332.CrossRefGoogle Scholar
  60. 60.
    Martin, A., Jr. 1963. A filterable Vibrio from fresh water. Proc. Pa. Acad. Sci. 36:174–178.Google Scholar
  61. 61.
    Morita, R. Y. 1985. Starvation and miniaturisation of heterotrophs, with special emphasis on maintenance of the starved viable state, p. 111–130. In M. M. Fletcher and G. D. Floodgate (ed.), Bacteria in Their Natural Environments. Academic Press, London, United Kingdom.Google Scholar
  62. 62.
    Moyer, G. L., and R. Y. Morita. 1989. Effect of growth rate and starvation-survival on cellular DNA, RNA, and protein of a psychrophilic marine bacterium. Appl. Environ. Microbiol. 55:2710–2716.PubMedGoogle Scholar
  63. 63.
    Moyer, G. L., and R. Y. Morita. 1989. Effect of growth rate and starvation-survival on the viability and stability of a psychrophilic marine bacterium. Appl. Environ. Microbiol. 55:1122–1127.Google Scholar
  64. 64.
    Nelson, D. R., Y. Sadlowski, M. Eguchi, and S. Kjelleberg. 1997. The starvation-stress response of Vibrio (Listonella) anguillarum. Microbiology 143:2305–2312.CrossRefGoogle Scholar
  65. 65.
    Nissen, H. 1987. Longterm starvation of a marine bacterium, Alteromonas denitrificans, isolated from a Norwegian fjord. FEMS Microbiol. Ecol. 45:173–183.CrossRefGoogle Scholar
  66. 66.
    Novitsky, J. A. and R. Y. Morita. 1976. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl. Environ. Microbiol. 32:617–622.PubMedGoogle Scholar
  67. 67.
    Novitsky, J. A., and R. Y. Morita. 1977. Survival of a psychrophilic marine vibrio under long-term nutrient starvation. Appl. Environ. Microbiol. 33:635–641.PubMedGoogle Scholar
  68. 68.
    Novitsky, J. A., and R. Y. Morita. 1978. Possible strategy for the survival of marine bacteria under starvation conditions. Marine Biol. 48:289–295.CrossRefGoogle Scholar
  69. 69.
    Nystrom, T., and S. Kjelleberg. 1989. Role of protein synthesis in the cell division and starvation induced resistance to autolysis of a marine Vibrio during the initial phase of starvation. J. Gen. Microbiol. 135:1599–1606.Google Scholar
  70. 70.
    Nystrom, T., C. Larsson, and L. Gustafsson. 1996. Bacterial defense against aging: role of the Escherichia coli ArcA regulator in gene expression, readjusted energy flux and survival during stasis. EMBO J. 15:3219–3228.PubMedGoogle Scholar
  71. 71.
    Oliver, J. D., L. Nilsson, and S. Kjelleberg. 1991. Formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl. Environ. Microbiol. 57:2640–2644.PubMedGoogle Scholar
  72. 72.
    Oppenheimer, C. H. 1952. The membrane filter in marine microbiology. J. Bacteriol. 64:783–786.PubMedGoogle Scholar
  73. 73.
    Postma, J., and H. J. Altemuller. 1990. Bacteria in thin soil sections stained with fluorescent brightner Calcofluor White M2R. Soil Biol. Biochem. 22:89–96.CrossRefGoogle Scholar
  74. 74.
    Postma, J., J. D. van Elsas, J. M. Govaert, and J. van Veen. 1988. The dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil as determined by immunofluorescence and selective plating techniques. FEMS Microbiol. Ecol. 53:251–260.Google Scholar
  75. 75.
    Reeve, C. A., P. S. Amy, and A. Martin. 1984. Role of protein synthesis in the survival of carbonstarved Escherichia coli K-12. J. Bacteriol. 160:1041–1046.PubMedGoogle Scholar
  76. 76.
    Rhodes, H. E. 1954. The illustration of the morphology of Vibrio fetus by electron microscopy. Am. J. Vet. Res. 15:630–633.Google Scholar
  77. 77.
    Rice, S. A., and J. D. Oliver. 1992. Starvation response of the marine barophile CNPT-3. Appl. Environ. Microbiol. 58:2432–2437.PubMedGoogle Scholar
  78. 78.
    Rockabrand, D., T. Aurgher, G. Korinek, K. Livers, and P. Blum. 1995. An essential role for the Escherichia coli DnaK protein in starvation-induced thermotolerance, H2O2 resistance, and reductive division. J. Bacteriol. 177:3695–3703.PubMedGoogle Scholar
  79. 79.
    Rockabrand, D., K. Livers, T. Austin, R. Kaiser, D. Jensen, R. Burgess, and P. Blum. 1998. Roles of DnaK and RpoS in starvation-induced thermotolerance of Escherichia coli. J. Bacteriol. 180:846–854.PubMedGoogle Scholar
  80. 80.
    Rollins, D. M., and R. R. Colwell. 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52:531–538.PubMedGoogle Scholar
  81. 81.
    Ron, E. Z., N. Grossman, and C. E. Helmstetter. 1977. Control of cell division in Escherichia coli effect of amino acid starvation. J. Bacteriol. 129:569–573.PubMedGoogle Scholar
  82. 82.
    Rosenberg, E., N. Kaplan, O. Pines, M. Rosenberg, and D. Gutnick. 1983. Capsular polysaccharides interfere with adherence of Acinetobacter calcoaceticus to hydrocarbon. FEMS Microbiol. Lett. 17:157–160.CrossRefGoogle Scholar
  83. 83.
    Simek, K., and T. H. Chrzanowski. 1992. Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl. Environ. Microbiol. 58:3715–3720.PubMedGoogle Scholar
  84. 84.
    Smibert, R. M. 1978. The genus Campylobacter. Annu. Rev. Microbiol. 32:673–709.PubMedCrossRefGoogle Scholar
  85. 85.
    Smigielski, A. J., B. J. Wallace, and K. C. Marshall. 1989. Changes in membrane functions during short-term starvation of Vibrio fluvialis strain NCTC 11328. Arch. Microbiol. 151:336–347.CrossRefGoogle Scholar
  86. 86.
    Tabor, P. S., K. Ohwada, and R. R. Colwell. 1981. Filterable marine bacteria found in the deep sea: distribution, taxonomy and response to starvation. Microb. Ecol. 7:67–83.CrossRefGoogle Scholar
  87. 87.
    Thorne, S. H., and H. D. Williams. 1997. Adaptation to nutrient starvation in Rhizobium leguminosarum bv. Phaseoli: Analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase. J. Bacteriol. 179:6894–6901.PubMedGoogle Scholar
  88. 88.
    Thorsen, B. K., O. Enger, S. Norland, and K. A. Hoff. 1992. Long-term starvation survival of Yersinia ruckeri at different salinities studied by microscopical and flow cytometric methods. Appl. Environ. Microbiol. 58:1624–1628.PubMedGoogle Scholar
  89. 89.
    Torella, F., and R. Y. Morita. 1981. Microcultural study of bacterial size changes and microcolony formation by heterotrophic bacteria in seawater. Appl. Environ. Microbiol. 41:518–527.Google Scholar
  90. 90.
    Ward, J. E., Jr., and J. Lutkenhaus. 1985. Overproduction of Fts Z induces minicell formation in E. coli. Cell 42:941–949.PubMedCrossRefGoogle Scholar
  91. 91.
    Watson, S. W., T. J. Novitsky, H. L. Quinby, and F. W. Valois. 1977. Determination of bacterial number and biomass in the marine environment. Appl. Environ. Microbiol. 33:940–946.PubMedGoogle Scholar
  92. 92.
    Wikner, J., A. Andersson, S. Normark, and A. Hagstrom. 1986. Use of genetically marked minicells as a probe in measurement of predation on bacteria in aquatic environments. Appl. Environ. Microbiol. 52:4–8.PubMedGoogle Scholar
  93. 93.
    Wrangstadh, M., P. L. Conway, and S. Kjelleberg. 1988. The role of an extracellular polysaccharide produced by the marine Pseudomonas sp. S9 in cellular detachment during starvation. Can. J. Microbiol. 35:309–312.CrossRefGoogle Scholar
  94. 94.
    Zambrano, M. M., D. A. Siegele, M. Almiron, A. Torino, and R. Kolter. 1993. Microbial competition Escherichia coli mutants that take over stationary phase cultures. Science 259:1757–1760.PubMedCrossRefGoogle Scholar
  95. 95.
    Zimmerman, R. 1977. Estimation of bacterial numbers and biomass by epifluorescence microscopy and scanning electron microscopy, p. 103–120. In G. Rheinheimer (ed.), Microbial Ecology of a Brackish Water Environment. Springer-Verlag, New York, N.Y.CrossRefGoogle Scholar
  96. 96.
    Zimmerman, R., and L.-A. Meyer-Reil. 1974. A new method for fluorescence staining of bacterial populations on membrane filter. Kiel. Meeresforsch. 30:24–27.Google Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Jeffrey J. Byrd
    • 1
  1. 1.Department of BiologySt. Mary’s College of MarylandSt. Mary’s CityUSA

Personalised recommendations