Advertisement

Abstract

The subject of anabiosis or “latent life” has long intrigued microbiologists and philosophers. It is well established that some microorganisms, notably the grampositive spore formers, can under certain conditions be deprived of all visible signs of life, and yet these organisms are not dead. When their original conditions are restored, they can return to normal life and activity (61). This state of an organism has been referred to in the older literature variously as “viable lifelessness,” suspended animation, viability, latent life, and even by the not very suitable term “anabiosis,” meaning “latent life.” This last term was used to describe the state of an organism when its metabolic activity is at lowest ebb, reaching a hardly measurable value and, in some cases, the physiological and biochemical processes being reversibly arrested for varying periods of time.

Keywords

Interstitial Cystitis Latent Life Vibrio Cholerae Aeromonas Salmonicida Nonculturable State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, S. L. and M. Janda. 1993. Rapid detection of acute cholera in airline passengers by coagglutination assay. J. Infect. Dis. 168:797–799.PubMedCrossRefGoogle Scholar
  2. 2.
    Albertson, N. H., G. W. Jones, and S. Kjelleberg. 1987. The detection of starvation-specific antigens of two marine bacteria. J. Gen. Microbiol. 133:2225–2232.Google Scholar
  3. 3.
    Allen-Austin, D., B. Austin, and R. R. Colwell. 1984. Survival of Aeromonas salmonicida in river water. FEMS Microbiol. Lett. 21:143–146.CrossRefGoogle Scholar
  4. 4.
    Anders, E. 1996. Evaluating the evidence for past life on Mars. Science 274:2119–2121.PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson, A. W., H. C. Nordan, R. F. Cain, G. Parrish, and D. Duggan. 1956. Studies on a radioresistant Micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol. 10:575–577.Google Scholar
  6. 6.
    Baker, H. 1753. Employment for the Microscope (see Part II, chapter IV, Eels in blighted wheat, 250:60). London.Google Scholar
  7. 7.
    Baker, R. M., F. L. Singleton, and M. A. Hood. 1983. Effects of nutrient deprivation on Vibrio cholerae. Appl. Environ. Microbiol. 46:930–940.PubMedGoogle Scholar
  8. 8.
    Baleux, B., and P. Got. 1996. Apport de l’observation microscopique couplée à l’analyse d’images dans l’evaluation de la qualité bactériologique des eaux: approche cellulaire globale. TSM 6:430–436.Google Scholar
  9. 9.
    Baleux, B., A. Caro, J. Lesne, P. Got, S. Binard, and B. Delpeuch. 1998. Survie et maintien de la virulence de Salmonella Typhimurium VNC exposée simultanément à trois facteurs stressants expérimentaux. Oceanol. Acta 21:939–950.CrossRefGoogle Scholar
  10. 10.
    Barcina, I., P. Lebaron, J. Vives-Rego. 1997. Survival of allochtonous bacteria in aquatic systems: a biological approach. FEMS Microbiol. Ecol. 23:1–9.CrossRefGoogle Scholar
  11. 11.
    Barer, M. R., L. T. Gribbon, C. R. Harwood, and C. E. Nwoguh. 1993. The viable but nonculturable hypothesis and medical bacteriology. Rev. Med. Microbiol. 4:183–191.CrossRefGoogle Scholar
  12. 12.
    Barer, M. R. 1997. Viable but nonculturable and dormant bacteria: time to resolve an oxymoron and a misnomer? J. Med. Microbiol. 46:629–631.PubMedCrossRefGoogle Scholar
  13. 13.
    Barer, M. R., and C. R. Harwood. 1999. Bacterial viability and culturability. Adv. Microb. Physiol. 41:93–137.PubMedCrossRefGoogle Scholar
  14. 14.
    Bernander, R., T. Stokke, and E. Boye. 1998. Flow cytometry of bacterial cells: comparison between different flow cytometers and different DNA stains. Cytometry 31:29–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Bisset, K. A. 1952. Bacteria. E & S Livingstone Ltd., Edinburgh, Scotland.Google Scholar
  16. 16.
    Bloomfield, S. F., G. S. A. B. Stewart, C. E. R. Dodd, I. R. Booth, and E. G. M. Power. 1998. The viable but non-culturable phenomenon explained? Microbiology 144:1–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Bogosian, G. 1998. Viable but nonculturable, or dead? ASM News 64:547. (Letter.)Google Scholar
  18. 18.
    Booth, W. 1987. Postmortem on Three Mile Island. Science 238:1342–1345.PubMedCrossRefGoogle Scholar
  19. 19.
    Bowden, W. B. 1977. Comparison of two direct-count techniques for enumerating aquatic bacteria. Appl. Environ. Microbiol. 33:1229–1232.PubMedGoogle Scholar
  20. 20.
    Brayton, P., M. L. Tamplin, A. Huq, and R. R. Colwell. 1987. Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent-antibody direct viable count. Appl. Environ. Microbiol. 53: 2862–2865.PubMedGoogle Scholar
  21. 21.
    Brayton, P. R., and R. R. Colwell. 1987. Fluorescent antibody staining method for enumeration of viable environmental Vibrio cholerae O1. J. Microbiol. Methods 6:309–314.CrossRefGoogle Scholar
  22. 22.
    Byrd, J. J., and R. R. Colwell. 1990. Maintenance of plasmids pBR322 and pUC8 in noncultivable Escherichia coli in the marine environment. Appl. Environ. Microbiol. 56:2104–2107.PubMedGoogle Scholar
  23. 23.
    Cano, R. J., and M. Borucki. 1995. Revival and identification of bacterial spores in 25–40 millionyear-old Dominican amber. Science 268:1060–1064.PubMedCrossRefGoogle Scholar
  24. 24.
    Caro, A., P. Got, J. Lesne, S. Binard, and B. Baleux. 1999. Viability and virulence of experimentally stressed nonculturable Salmonella Typhimurium. Appl. Environ. Microbiol. 65:3229–3232.PubMedGoogle Scholar
  25. 25.
    Chowdhury, M. A. R., B. Xu, R. Montilla, J. A. K. Hasan, A. Huq, and R. R. Colwell. 1995. DFA-DVC: a simplified technique for detection of viable cells of V. cholerae O1 and 0139. J. Microbiol. Methods 24:165–170.CrossRefGoogle Scholar
  26. 26.
    Colwell, R. R., J. Kaper, and S. W. Joseph. 1977. Vibrio cholerae, Vibrio parahaemolyticus and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394–396.PubMedGoogle Scholar
  27. 27.
    Colwell, R., P. Brayton, D. Grimes, D. Roszak, S. Huq, and L. Palmer. 1985. Viable, but nonculturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Bio/Technology 3:817–820.CrossRefGoogle Scholar
  28. 28.
    Colwell, R. R., M. L. Tamplin, P. R. Brayton, A. L. Gauzens, B. D. Tall, D. Harrington, M. M. Levine, S. Hall, A. Huq, and D. A. Sack. 1990. Environmental aspects of V. cholerae in transmission of cholera, p. 327–343. In R.B. Sack and Y. Zinnaka (ed.), Advances in Research on Cholera and Related Diarrhoeas, 7th ed. K. T. K. Scientific Publishers, Tokyo, Japan.Google Scholar
  29. 29.
    Colwell, R. R., P. Brayton, A. Huq, B. Tall, P. Harrington, and M. Levine. 1996. Viable but non-culturable Vibrio cholerae O1 revert to a culturable state in the human intestine. World J. Microbiol. Biotechnol. 12:28–31.CrossRefGoogle Scholar
  30. 30.
    Cornax, R., M. A. Morinigo, P. Romero, J. J. Borrego. 1990. Survival of pathogenic microorganisms in seawater. Curr. Microbiol. 20:293–298.CrossRefGoogle Scholar
  31. 31.
    Crowe, J. H., and A. F. Cooper. 1971. Cryptobiosis. Sci. Am. 225(6):30–36.CrossRefGoogle Scholar
  32. 32.
    Dawes, E. A. 1989. Growth and survival of bacteria, p. 67–187. In J. S. Poindexter and E. Leadbetter (ed.), Bacteria in Nature, vol. 3. Plenum Press, New York, N.Y.CrossRefGoogle Scholar
  33. 33.
    Dawson, M. P., B. A. Humphrey, and K. C. Marshall. 1981. Adhesion: a tactic in the survival strategy of a marine vibrio during starvation. Curr. Microbiol. 6:195–199.CrossRefGoogle Scholar
  34. 34.
    Dixon, B. 1998. Viable but nonculturable. ASM News 64:372–373.Google Scholar
  35. 35.
    Dodd, C. E. R., R. L. Sharman, S. F. Bloomfield, I. R. Booth, and G. S. A. B. Stewart. 1997. Inimical processes: bacterial self-destruction and sublethal injury. Trends Food Sci. Technol. 8:38–241.CrossRefGoogle Scholar
  36. 36.
    Domingue, G. J., G. M. Ghoniem, K. L. Bost, C. Fermin, and L. G. Human. 1995. Dormant microbes in interstitial cystitis. J. Urol. 158:1921–1926.Google Scholar
  37. 37.
    Dupray, E., M. Pommepuy, A. Derrien, M. P. Caprais, and M. Cormier. 1993. Use of the direct viable count (D.V.C.) for the assessment of survival of E. coli in marine environments. Water Sci. Tech. 27(3–4):395–399.Google Scholar
  38. 38.
    Ehrenberg, C. G. 1838. Die Infusionsthierchen als volkomene Organismen. Ein Blick in das tiefere organische Leben der Natur. Leipzig.Google Scholar
  39. 39.
    Felter, R. A., R. R. Colwell, and G. B. Chapman. 1969. Morphology and round body formation of Vibrio marinus. J. Bacteriol. 99:326–335.PubMedGoogle Scholar
  40. 40.
    Felter, R. A., S. F. Kennedy, R. R. Colwell, and G. B. Chapman. 1969. Intracytoplasmic membrane structures in Vibrio marinus. J. Bacteriol. 102:552–560.Google Scholar
  41. 41.
    Fontana, F. 1776. Lettre à un de ses amis sur l’ergot et le Tremella. J. de Physique, l’Abbé Rozier. 7:42.Google Scholar
  42. 42.
    Fry, J. C. 1990. Direct methods and biomass estimation. Methods Microbiol. 22:41–85.CrossRefGoogle Scholar
  43. 43.
    Gest, H. 1996. Microorganisms are ubiquitous on Earth—did they also evolve on Mars? ASM News 63:296–297.Google Scholar
  44. 44.
    Grimes, D. J., and R. R. Colwell. 1986. Viability and virulence of Escherichia coli suspended by membrane chamber in semitropical ocean water. FEMS Microbiol. Lett. 34:161–165.CrossRefGoogle Scholar
  45. 45.
    Grimes, D. J., R. W. Attwell, P. R. Brayton, L. M. Palmer, D. M. Rollins, D. B. Roszak, F. L. Singleton, M. L. Tamplin, and R. R. Colwell. 1986. Fate of enteric pathogenic bacteria in the estuarine and marine environment. Microbiol. Sci. 3:324–329.PubMedGoogle Scholar
  46. 46.
    Guelin, A. M., I. E. Mishustina, L. V. Andreev, M. A. Bobyk, and V. A. Lambina. 1979. Some problems of the ecology and taxonomy of marine microvibrios. Biol. Bull. Acad. Sci. USSR 5:336–340.Google Scholar
  47. 47.
    Hallock, F. A. 1960. The life cycle of Vibrio alternons (sp. nov.). Trans. Am. Microsc. Soc. 79: 404–412.CrossRefGoogle Scholar
  48. 48.
    Hamamoto, T., and K. Horikoshi. 1994. Characterization of a bacterium isolated from amber. Biodiv. Conserv. 3:567–572.CrossRefGoogle Scholar
  49. 49.
    Hasan, J. A. K., A. Huq, and R. R. Colwell. 1991. A method of determination of individual respiring microorganisms and substrate responsive cells in aquatic microcosms. Proc. Abst., p. 212. USA-Japan Cholera Conference, Charlottesville, Va.Google Scholar
  50. 50.
    Hasan, J. A. K., A. Huq, M. L. Tamplin, R. Siebeling, and R. R. Colwell. 1994. A novel kit for rapid detection of V. cholerae O1. J. Clin. Microbiol. 32:249–252.PubMedGoogle Scholar
  51. 51.
    Hasan, J. A. K. 1995. Development and application of rapid test kits for the detection of V. cholerae in water, food and clinical samples. Ph.D. dissertation. University of Maryland, College Park.Google Scholar
  52. 52.
    Hasan, J. A. K., A. Huq, G. B. Nair, S. Garg, A. K. Mukhopadhyay, L. Loomis, D. Bernstein, and R. R. Colwell. 1995. Development and testing of monoclonal antibody-based rapid immunodiagnostic test kits for direct detection of Vibrio cholerae O139 synonym Bengal. J. Clin. Microbiol. 33:2935–2939.PubMedGoogle Scholar
  53. 53.
    Hattori, T. 1988. The Viable Count: Quantitative and Environmental Aspects. Springer-Verlag, Berlin, Germany.Google Scholar
  54. 54.
    Hobbie, J. E., R. J. Daley, and S. Jasper. 1977. Use of nucleopore filters for counting bacteria by fluorescent microscopy. Appl. Environ. Microbiol. 33:1225–1228.PubMedGoogle Scholar
  55. 55.
    Holmquist, L., and S. Kjelleberg. 1993a. Changes in viability, respiratory activity and morphology of the marine Vibrio sp. strain S14 during starvation of individual nutrients and subsequent recovery. FEMS Microbiol. Ecol. 12:215–224.CrossRefGoogle Scholar
  56. 56.
    Holmquist, L., and S. Kjelleberg. 1993b. The carbon starvation stimulon in the marine Vibrio sp. S14 (CCUG15956) includes three periplasmic space protein responders. J. Gen. Microbiol. 139:209–215.Google Scholar
  57. 57.
    Huq, A., R. R. Colwell, R. Rahman, A. Ali, M. A. R. Chowdhury, S. Parveen, D. A. Sack, and E. Russek-Cohen. 1990. Occurrence of V cholerae in the aquatic environment measured by fluorescent antibody and culture method. Appl. Environ. Microbiol. 56:2370–2373.PubMedGoogle Scholar
  58. 58.
    Huq, A., J. A. K. Hasan, G. Losonsky, V. Diomin, and R. R. Colwell. 1994. Colonization of professional divers by toxigenic Vibrio cholerae O1 and V. cholerae non-O1 at dive sites in the United States, Ukraine and Russia. FEMS Microbiol. Lett. 120:137–142.PubMedCrossRefGoogle Scholar
  59. 59.
    Huq, A., R. R. Colwell, M. A. R. Chowdhury, B. Xu, S. M. Muniruzzaman, M. S. Islam, M. Alam, M. Yunus, and M. J. Albert. 1995. Coexistence of Vibrio cholerae O1 and O139 Bengal in plankton in Bangladesh. Lancet 345:1249.PubMedCrossRefGoogle Scholar
  60. 60.
    Jones, D. M., E. M. Sutcliffe, and A. Curry. 1991. Recovery of viable but nonculturable Campylobacter jejuni. J. Gen. Microbiol. 25:415–420.Google Scholar
  61. 61.
    Keilin, D. 1959. The problem of anabiosis or latent life: history and current concept. Proc. R. Soc. Biol. B 150:149–191.CrossRefGoogle Scholar
  62. 62.
    Kell, D. B., A. S. Kaprelyants, D. Weichart, C. R. Harwood, and M. R. Barer. 1998. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek. 73:169–187.PubMedCrossRefGoogle Scholar
  63. 63.
    Kell, D. B., H. M. Davey, G. V. Mukamolova, T. V. Votyakova, and A. S. Kaprelyants. 1995. A summary of recent work on dormancy in nonsporulating bacteria: Its significance for marine microbiology and biotechnology. J. Mar. Biotechnol. 3:24–25.Google Scholar
  64. 64.
    Kennedy, S., R. Colwell, and G. Chapman. 1970. Ultrastructure of a psychrophilic marine vibrio. Can. J. Microbiol. 16:1027–1032.PubMedCrossRefGoogle Scholar
  65. 65.
    Kepner, R. L., Jr., and J. R. Pratt. 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples. Microbiol. Rev. 58:603–615.PubMedGoogle Scholar
  66. 66.
    Koch, R. 1884. An address on cholera and its bacillus. Br. Med. J. 2:403–407, 453-459.PubMedCrossRefGoogle Scholar
  67. 67.
    Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415–420.PubMedCrossRefGoogle Scholar
  68. 68.
    Kolter, R., D. A. Siegele, and A. Torino. 1993. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47:855–874.PubMedCrossRefGoogle Scholar
  69. 69.
    Kondo, K., A. Takade, and K. Amako. 1994. Morphology of the viable but nonculturable Vibrio cholerae as determined by the freeze fixation technique. FEMS Microbiol. Lett. 123:179–184.PubMedCrossRefGoogle Scholar
  70. 70.
    Kurath, G., and Y. Morita. 1983. Starvation survival and physiological studies of a marine Pseudomonas sp. Appl. Environ. Microbiol. 45:1206–1211.PubMedGoogle Scholar
  71. 71.
    Lange, R., and R. Hengge-Aronis. 1991. Identification of a central regulator of stationary-phase gene expression of Escherichia coli. Mol. Microbiol. 5:49–59.PubMedCrossRefGoogle Scholar
  72. 72.
    Lazaro, B., J. Cárcamo, A. Audicana, I. Perales, and A. Fernández-Astorga. 1999. Viability and DNA maintenance in nonculturable spiral Campylobacter jejuni cells after long-term exposure to low temperatures. Appl. Environ. Microbiol. 65:4677–4681.PubMedGoogle Scholar
  73. 73.
    Linder, K., and J. D. Oliver. 1989. Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55:2837–2842.PubMedGoogle Scholar
  74. 74.
    Lloyd, D. 1993. Flow Cytometry in Microbiology. Springer-Verlag, London, United Kingdom.Google Scholar
  75. 75.
    Losonsky, G. A., J. A. K. Hasan, A. Huq, S. Kaintuch, and R. R. Colwell. 1994. Serum antibody responses of diverse to waterborne pathogens. J. Clin. Diagnos. Lab. Immun. 1:182–185.Google Scholar
  76. 76.
    Lowell, P. 1908. Mars as the Abode of Life. The Macmillan Co., New York, N.YGoogle Scholar
  77. 77.
    McCabe, A. 1990. The potential significance of microbial activity in radioactive waste disposal. Experientia 46:779–787.CrossRefGoogle Scholar
  78. 78.
    McCann, M. P., J. P. Kidwell, and A. Matin. 1991. The putative factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J. Bacteriol. 173:4188–4194.PubMedGoogle Scholar
  79. 79.
    McFeters, G. A., and A. Singh. 1991. Effects of aquatic environmental stress on enteric bacterial pathogens. J. Appl. Bacteriol. 70(Symp. Suppl.):115S–120S.Google Scholar
  80. 80.
    McFeters, G. A., F. P. Yu, B. H. Pyle, and P. S. Stewart. 1995. Physiological assessment of bacteria using fluorochromes. J. Microbiol. Methods 21:1–13.PubMedCrossRefGoogle Scholar
  81. 81.
    McKay, D. S., E. K. Gibson, Jr., K. L. Thomas-Keprta, H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Chillier, C. R. Maechling, and R. N. Zare. 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930.PubMedCrossRefGoogle Scholar
  82. 82.
    Medema, G. J., F. M. Schets, A. W. van de Giessen, and A. H. Haveljar. 1992. Lack of colonization of 1 day chicks by viable non-culturable Campylobacter jejuni. J. Appl. Bacteriol. 72:512–516.PubMedCrossRefGoogle Scholar
  83. 83.
    Mishustina, I. E., and T. G. Kameneva. 1981. Bacterial cells of the minimal size in the Barents Sea during the polar night. Mikrobiologiya 50:360–363.Google Scholar
  84. 84.
    Mitscherlich, E., and E. H. Marth. 1984. Microbial Survival in the Environment: Bacteria and Rickettsiae Important in Human and Animal Health. Springer-Verlag, Berlin, Germany.Google Scholar
  85. 85.
    Monfort, P., and B. Baleux. 1991. Distribution and survival of motile Aeromonas spp. in brackish water receiving sewage treatment effluent. Appl. Environ. Microbiol. 57:2459–2467.PubMedGoogle Scholar
  86. 86.
    Monfort, P., and B. Baleux. 1992. Comparison of flow cytometry and epifluorescence microscopy for counting bacteria in aquatic ecosystems. Cytometry 13:188–192.PubMedCrossRefGoogle Scholar
  87. 87.
    Monfort, P., and B. Baleux. 1999. Bactéries viables non cultivables: réalité et conséquences. Bull. Soc. Fr. Microbiol. 14(3):201–207.Google Scholar
  88. 88.
    Monfort, P., M.-H. Ratinaud, P. Got, and B. Baleux. 1995. Apports de la cytométrie en flux et en image en écologie bacterienne des milieux aquatiques. Océanis 21:97–111.Google Scholar
  89. 89.
    Morita, R. Y. 1993. Bioavailability of energy and the starvation state, p. 1–23. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.Y.Google Scholar
  90. 90.
    Moseley, B. E. B. 1983. Photobiology and radiobiology of Micrococcus (Deinococcus) radiodurans. Photochem. Photobiol. Rev. 7:223–234.CrossRefGoogle Scholar
  91. 91.
    Munro, P. M., and R. R. Colwell. 1996. Fate of Vibrio cholerae O1 in seawater microcosms. Water Res. 30(1):47–50.CrossRefGoogle Scholar
  92. 92.
    Needham, J. T. 1745. New Microscopical Discoveries. [Of eels in blighted wheat. pp. 85-89.] London.Google Scholar
  93. 93.
    Needham, J. T. 1775. Lettre écrite à l’auteur de ce Receuil. J. de Physique, l’Abbé Rozier 5:226.Google Scholar
  94. 94.
    New York Times, May 19, 1995.Google Scholar
  95. 95.
    Novitsky, J. A., and R. Y. Morita. 1978. Possible strategy for the survival of marine bacteria under starvation conditions. Marine Biol. 48:289–295.CrossRefGoogle Scholar
  96. 96.
    Nwoguh, C. E., C. R. Harwood, and Barer, M. R. 1993. Detection of induced beta-galactosidase activity in individual non-culturable cells of pathogenic bacteria by quantitative cytological assay. Mol. Microbiol. 17:545–554.CrossRefGoogle Scholar
  97. 97.
    Oliver, J. D. 1993. Formation of viable but nonculturable cells, p. 239–272. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.Y.Google Scholar
  98. 98.
    Oliver, J. D. 1995. The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol. Lett. 133:203–208.PubMedCrossRefGoogle Scholar
  99. 99.
    Pitonzo, B. J., P. S. Amy, and M. Rudin. 1999. Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site. Radiation Res. 152:64–70.PubMedCrossRefGoogle Scholar
  100. 100.
    Pitonzo, B. J., P. S. Amy, and M. Rudin. 1999. Resuscitation of microorganisms after gamma irradiation. Radiation Res. 152:71–75PubMedCrossRefGoogle Scholar
  101. 101.
    Pommepuy, M., M. B Utin, A. Derrien, M. Gourmelon, R. R. Colwell, and M. Cormier. 1996. Retention of enteropathogenicity by viable but nonculturable Escherichia coli exposed to seawater and sunlight. Appl. Environ. Microbiol. 62:4621–4626.PubMedGoogle Scholar
  102. 102.
    Porter, K. G., and Y. S. Fieg. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr. 25:943–948.CrossRefGoogle Scholar
  103. 103.
    Porter, J., D. Deere, R. Pickup, and C. Edwards. 1996. Fluorescent probes and flow cytometry: new insights into environmental bacteriology. Cytometry 23:91–96.PubMedCrossRefGoogle Scholar
  104. 104.
    Postgate, J. R. 1967. Viability measurements and the survival of microbes under minimum stress. Adv. Microb. Physiol. 1:1–24.CrossRefGoogle Scholar
  105. 105.
    Postgate, J. R., and J. R. Hunter. 1962. The survival of starved bacteria. J. Gen. Microbiol. 29: 233–263.PubMedGoogle Scholar
  106. 106.
    Postgate, J. R. 1969. Viable counts and viability. Methods Microbiol. 1:611–628.CrossRefGoogle Scholar
  107. 107.
    Preyer, W. 1872. Mitteilung aus dem Vortrag des Herrn Prof. Dr. Preyer. Tagebl. 45 Versamml. Dtsch. Naturs. Aertze. Leipzig. 18:46.Google Scholar
  108. 108.
    Preyer, W. 1891. Ueber dàle Anabiosc. Biol. Zbl. 11:1.Google Scholar
  109. 109.
    Rahman, I., M. Shahamat, P. A. Kirchman, E. Russek-Cohen, and R. R. Colwell. 1994. Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol. 60:3573–3578.PubMedGoogle Scholar
  110. 110.
    Rahman, I., M. Shahamat, M. A. R. Chowdhury, and R. R. Colwell. 1996. Potential virulence of viable but nonculturable Shigella dysenteriae type I. Appl. Environ. Microbiol. 62:115–120.PubMedGoogle Scholar
  111. 111.
    Ravel, J., R. T. Hill, and R. R. Colwell. 1994. Isolation of a Vibrio cholerae transposon-mutant with an altered viable but nonculturable response. FEMS Microbiol. Lett. 120:57–62.PubMedCrossRefGoogle Scholar
  112. 112.
    Roffredi, M. 1775. Sur l’origine des petits vers ou Anguilles du Bled rachitique. J. Physique, l’ Abbé Rozier. Paris. 5:1.Google Scholar
  113. 113.
    Roffredi, M. 1775. Seconde lettre ou suite d’observations sur le rachitism du Bled, sur les Anguilles de la colle de farine et sur le grain charbonné. J. Physique, l’Abbé Rozier. 5:197.Google Scholar
  114. 114.
    Roffredi, M. 1776. Mémoire pour servir de supplément et d’éclaircissement aux mémoires sur les Anguilles du Bled et de la colle de farine. J. Physique, l’Abbé Rozier. 7:369.Google Scholar
  115. 115.
    Rollins, D. M., and R. R. Colwell. 1986. Viable but non-culturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52:531–538.PubMedGoogle Scholar
  116. 116.
    Roszak, D. B., D. J. Grimes, and R. R. Colwell. 1984. Viable but non-recoverable stage of Salmonella enteritidis in aquatic systems. Can. J. Microbiol. 30:334–338.PubMedCrossRefGoogle Scholar
  117. 117.
    Roszak, D. B., and R. R. Colwell. 1987. Metabolic activity of bacterial cells enumerated by direct viable count. Appl. Environ. Microbiol. 53:2889–2983.PubMedGoogle Scholar
  118. 118.
    Roszak, D. B., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365–379.PubMedGoogle Scholar
  119. 119.
    Shahamat, M., U. Mai, C. Paszko-Kolva, M. Kessel, and R. Colwell. 1993. Use of autoradiography to assess viability of Helicobacter pylori in water. Appl. Environ. Microbiol. 59:1231–1235.PubMedGoogle Scholar
  120. 120.
    Shirai, H., M. Nishibuchi, T. Ramamurthy, S. K. Bhattacharya, S. C. Pal, and Y. Takeda. 1991. Polymerase chain reaction for detection of cholera enterotoxin operon of V. cholerae. J. Clin. Microbiol. 29:2517–2521.PubMedGoogle Scholar
  121. 121.
    Singh, A., M. W. LeChavallier, and G. A. McFeters. 1985. Reduced virulence of Yersinia enterocolitica by copper-induced injury. Appl. Environ. Microbiol. 50:406–411.PubMedGoogle Scholar
  122. 122.
    Singh, A., R. Yeager, and G. A. McFeters. 1986. Assessment of in vivo revival, growth, and pathogenicity of Escherichia coli strains after copper-and chlorine-induced injury. Appl. Environ. Microbiol. 52:832–837.PubMedGoogle Scholar
  123. 123.
    Spallanzani, L. 1769. Nouvelles recherches sur les découvertes microscopiques et sur la géneration des corps organisés, p. 25. In Needham (lr.). Nouvelles Recherches Physiques et Métaphysiques sur la Nature et la Religion, vol. 1. Lacombe, London.Google Scholar
  124. 124.
    Spallanzani, Abbé. 1787. Opuscules de physique animale et végétale (translated from Italian, 1776, by J. Senebier), 2 vol. Paris. [Vol. 2 contains a chapter, “Observations et experiences sur quelques animaux surprenant que l’observateur peut à son gré faire passer de la mort à la vie, p. 203-285.]Google Scholar
  125. 125.
    Spallanzani, Abbé. 1803. Tracts on the Natural History of Animals and Vegetables, 2 vol. Creech and Constable, Edinburgh, Scotland. (translated from Italian by J. G. Dalyell.) [Second edition, see pp. 119-194: “Observations and experiments on some singular animals which may be killed and revived.” An abridged edition in one volume appeared in 1799.]Google Scholar
  126. 126.
    Stevenson, L. H. 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4:127–133.CrossRefGoogle Scholar
  127. 127.
    Strugger, S. 1949. Fluoreszensmikroskopie and Mikrobiologie, p. 151–173. M. V. H. Schaper, Hanover, West Germany.Google Scholar
  128. 128.
    Valentine, R. C., and J. R. G. Bradfield. 1954. The urea method for bacterial viability counts with the electron microscope and its relation to other viability counting methods. J. Gen. Microbiol. 11:349–357.PubMedGoogle Scholar
  129. 129.
    van Leeuwenhoek, A. 1702. On certain animalcules found in the sediment in gutters of the roofs of houses. Letter 144, vol. 2, p. 207–213. In Samuel Hoole (ed.), The Select Works of Antony van Leeuwenhoek. H. Fry, London, England.Google Scholar
  130. 130.
    Wertheim, M. 1999. Indestructible, p. 43. N Sci. October 23, 1999.Google Scholar
  131. 131.
    Wheals, A. 1997. Stationary phase: entry, residence and exit. SGM Q. 1997:16.Google Scholar
  132. 132.
    Xu, Huai-Shu, N. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes, and R. R. Colwell. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8:313–323.CrossRefGoogle Scholar
  133. 133.
    Yu, F. P., and G. A. McFeters. 1994. Physiological responses of bacteria in biofilms to disinfection. Appl. Environ. Microbiol. 60:2462–2466.PubMedGoogle Scholar
  134. 134.
    Zimmerman, R., R. Iturriaga, and J. Becker-Birck. 1978. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. Environ. Microbiol. 36:926–935.Google Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Rita R. Colwell
    • 1
    • 2
  1. 1.Center of Marine Biotechnology, Columbus CenterUniversity of Maryland Biotechnology InstituteBaltimoreUSA
  2. 2.Department of Cell and Molecular BiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations