Chemical Disinfection and Injury of Bacteria in Water

  • Gordon A. McFeters
  • Mark W. LeChevallier


Exposure of enteric bacteria to sublethal levels of antibacterial agents and unfavorable conditions in many environments results in altered phenotypes within these organisms. Reports over the past five decades describe the failure of Escherichia coli to be recovered using commonly accepted media and incubation conditions following exposure to compounds such as phenolic antiseptics (33, 35) and chlorine (68). As reviewed by Harris (32) and Ray (75), these early observations of reduced bacterial recovery following exposure to a range of sublethal environmental Stressors were interpreted as a form of cellular damage that reduced the culturability of allochthonous bacteria using methods that were not restrictive for freshly cultivated bacteria. Some of the earliest workers studying this phenomenon observed that such damaged bacteria became more fastidious in their nutritional requirements for subsequent growth (100). An additional facet of that phenomenon that was also recognized relatively early (32) was the capability of the stressed cells to regain their more robust phenotype through a “revival” process where the damage was repaired under favorable circumstances. This recovery typically requires between 1 and 3 h of incubation under nonrestrictive conditions. During this time the level of colonyforming units (CFU) on selective media increases to the constant concentration seen using nonselective media. As pointed out by Litsky (54), environmental conditions that stress enteric bacteria are a common feature of most aquatic systems, and it should not be surprising that damaged cells are incapable of colony formation on many harsh selective media that continue to be used in microbiological analyses. Litsky further argued that this scenario represents an error among the early environmental microbiologists since many of these analytical approaches were borrowed without modification from medical applications where the target bacteria are both more numerous and directly isolated from an environment within a patient or animal to which the bacteria are well adapted.


Much Probable Number Coliform Bacterium Free Chlorine Indicator Bacterium Chlorine Dioxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    APHA, AWWA, and WEE. 1992. Stressed organisms. In pp. 924–926. A. E. Greenberg (ed.), Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, D.C.Google Scholar
  2. 2.
    Bailey, C. A., R. A. Neihoff, and P. S. Tabor. 1983. Inhibitory effect of solar radiation on amino acid uptake in Chesapeake Bay bacteria. Appl. Environ. Microbiol. 46:44–49.PubMedGoogle Scholar
  3. 3.
    Beuchat, L. R. 1978. Injury and the repair of gram-negative bacteria with special consideration of the involvement of the cytoplasmic membrane. Adv. Appl. Microbiol. 23:219–244.PubMedCrossRefGoogle Scholar
  4. 4.
    Benarde, M., W. B. Snow, V. P. Oliveri, and B. Davidson. 1967. Kinetics and mechanism of bacterial disinfection by chlorine dioxide. Appl. Microbiol. 15:257–265.PubMedGoogle Scholar
  5. 5.
    Berg, J. D., P. V. Roberts, and A. Matin. 1986. Effect of chlorine dioxide on selected membrane functions of E. coli. J. Appl. Bacteriol. 60:213–220.PubMedCrossRefGoogle Scholar
  6. 6.
    Bissonnette, G. K. 1974. Recovery characteristics of bacteria injured in the natural aquatic environment. PhD dissertation. Montana State University, Bozeman.Google Scholar
  7. 7.
    Bissonnette, G. K., J. J. Jezeski, G. A. McFeters, and D. G. Stuart. 1975. Influence of environmental stress on enumeration of indicator bacteria from natural waters. Appl. Microbiol. 29:186–194.PubMedGoogle Scholar
  8. 8.
    Bissonnette, G. K., J. J. Jezeski, G. A. McFeters, and D. G. Stuart. 1977. Evaluation of recovery methods to detect coliforms from water. Appl. Environ. Microbiol. 33:590–595.PubMedGoogle Scholar
  9. 9.
    Blaser, M. J., P. F. Smith, W.-L. L. Wang, and J. C. Hoff. 1986. Inactivation of C. jejuni by chlorine and monochloramine. Appl. Environ. Microbiol. 51:307–311.PubMedGoogle Scholar
  10. 10.
    Braswell, J. R., and A. W. Hoadley. 1974. Recovery of E. coli from chlorinated sewage. Appl. Microbiol. 28:328–329.PubMedGoogle Scholar
  11. 11.
    Buazzi, M. M., and E. H. Marth. 1992. Characteristics of sodium benzoate injury of L. monocytogenes. Microbios 70:199–207.PubMedGoogle Scholar
  12. 12.
    Bucklin, K. E., G. A. McFeters, and A. Amirtharaja. 1991. Penetration of coliforms through municipal drinking water filters. Water Res. 25:1013–1017.CrossRefGoogle Scholar
  13. 13.
    Busta, F. F. 1976. Practical implications of injured microorganisms in food. J. Milk Food Technol. 39:138–145.Google Scholar
  14. 14.
    Busta, F. F. 1978. Introduction to injury, p. 195–201. In D. Perlman (ed.), Adv. Appl. Microbiol. 23:195-201. Academic Press, New York, N.Y.Google Scholar
  15. 15.
    Calabrese, J. P., and G. K. Bissonnette. 1990. Improved membrane filtration method incorporating catalase and sodium pyruvate for detection of chlorine-stressed coliform bacteria. Appl. Environ. Microbiol. 56:3558–3564.PubMedGoogle Scholar
  16. 16.
    Caldwell, B. A., and R. Y. Morita. 1987. Sampling Regimes and Bacteriological Tests for Coliform Detection in Groundwater. EPA/60/2-87/083. U.S. Environmental Protection Agency, Cincinnati, Oh.Google Scholar
  17. 17.
    Camper, A. K., and G. A. McFeters. 1979. Chlorine injury and the enumeration of waterborne coliform bacteria. Appl. Environ. Microbiol. 37:633–641.PubMedGoogle Scholar
  18. 18.
    Colwell, R. R., P. R. Brayton, D. J. Grimes, and D. B. Rozak. 1985. Viable but non-recoverable V. cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Bio/Technology 3:817–820.CrossRefGoogle Scholar
  19. 19.
    Craun, G. F. 1986. Waterborne Diseases in the United States. CRC Press, Boca Raton, Fla.Google Scholar
  20. 20.
    Demple, B. 1991. Regulation of bacterial oxidative stress genes. Annu. Rev. Genet. 25:315–337.PubMedCrossRefGoogle Scholar
  21. 21.
    Domek, M. J., M. W. LeChevallier, S. C. Cameron, and G. A. McFeters. 1984. Evidence for the role of copper in the injury process of conforms in drinking water. Appl. Environ. Microbiol. 48: 289–293.PubMedGoogle Scholar
  22. 22.
    Double, M. A., and G. K. Bissonnette. 1980. Enumeration of coliforms from streams containing acid mine water. J. Water Pollut. Control Fed. 52:1947–1952.Google Scholar
  23. 23.
    duPreez, M., and R. Kfir. The extent of bacterial injury after chlorination. Aqua, in press.Google Scholar
  24. 24.
    Finch, G. R., M. E. Stiles, and D. W. Smith. 1987. Recovery of a marker strain of E. coli from ozonated water by membrane filtration. Appl. Environ. Microbiol. 53:2894–2896.PubMedGoogle Scholar
  25. 25.
    Fujioka, R. S., and O. T. Narikawa. 1981. Effect of sunlight on enumeration of indicator bacteria under field conditions. Appl. Environ. Microbiol. 41:690–696.PubMedGoogle Scholar
  26. 26.
    Geldreich, E. E., M. D. Nash, D. J. Reasoner, and R. H. Taylor. 1978 The necessity of controlling bacterial populations in potable waters: community water supply. J. Am. Water Works Assoc. 64: 596–602.Google Scholar
  27. 27.
    Geldreich, E. E., M. J. Allen, and R. H. Taylor. 1978. Interferences to coliform detection in potable water supplies, p. 13–20. In C. W. Hendricks, (ed.), Evaluation of the Microbiology Standards for Drinking Water. (EPA-570/9-78-00C), USEPA, Washington, D.C.Google Scholar
  28. 28.
    Goshko, M. A., W. O. Pipes, and R. R. Christian. 1983. Coliform occurrence and chlorine residual in small distribution systems. J. Am. Water Works Assoc. 74:372–378.Google Scholar
  29. 29.
    Grahm, P. J., and G. R. Brenniman. 1983. Enumeration of chlorine-damaged fecal coliforms in wastewater effluents. J. Water Pollut. Control Fed. 55:164–169.Google Scholar
  30. 30.
    Haas, C. W., and R. S. Englebrecht. 1980. Physiological alterations of vegetative microorganisms resulting from chlorination. J. Water Pollut. Control Fed. 52:1976–1989.PubMedGoogle Scholar
  31. 31.
    Hackney, C. R., and G. K. Bissonnette. 1978. Recovery of indicator bacteria in acid mine streams. J. Water Pollut. Control Fed. 50:775–780.Google Scholar
  32. 32.
    Harris, N. D. 1963. The influence of recovery medium and the incubation temperature on the survival of damaged bacteria. J. Appl. Bacteriol. 26:387–397.CrossRefGoogle Scholar
  33. 33.
    Harris, N. D., J. P. Richards, and M. Whitefield. 1961. On the relationship between the viability of bacteria damaged by antiseptics and their responsiveness to modifications in the counting medium. J. Appl. Bacteriol. 24:182–187.CrossRefGoogle Scholar
  34. 34.
    Heinmets, F., W. W. Taylor, and J. J. Lehman. 1954. The use of metabolites in restoration of viability of heat and chemically inactivated E. coli. J. Bacteriol. 67:5–12.Google Scholar
  35. 35.
    Hershey, A. D. 1939. Factors limiting bacterial growth: properties of E. coli surviving sublethal temperatures. J. Bacteriol. 38:563–579.PubMedGoogle Scholar
  36. 36.
    Herwaldt, B. L., G. F. Craun, S. L. Stokes, and D. D. Juranek. 1992. Outbreaks of waterborne disease in the United States: 1989–1990. J. Am. Water Works Assoc. 84(April):129–135.Google Scholar
  37. 37.
    Hoadley, A. W., and C. M. Cheng. 1974. Recovery of indicator bacteria on selective media. J. Appl. Bacteriol. 37:45–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Hurst, A. 1977. Bacterial injury; a review. Can. J. Microbiol. 23:936–944.CrossRefGoogle Scholar
  39. 39.
    Hurst, A. 1984. Revival of vegetative bacteria after sublethal heating, p. 77–104. In M. H. E. Andrew and A. D. Russell (ed.), The Revival of Injured Microbes. Academic Press, London, United Kingdom.Google Scholar
  40. 40.
    Ingols, R. S. 1958. The effect of monochloramine and chromate on bacterial chromosomes. Public Health Works 89:105–106.Google Scholar
  41. 41.
    Kapuscinski, R. B., and R. Mitchell. 1981. Solar radiation induces sublethal injury in E. coli in seawater. Appl. Environ. Microbiol. 41:670–674.PubMedGoogle Scholar
  42. 42.
    Kramer, M. H., B. L. Herwaldt, G. F. Craun, R. L. Calderon, and D. D. Juranek. 1996. Waterborne disease: 1993 and 1994. J. Am. Water Works Assoc. 88:66–80.Google Scholar
  43. 43.
    LeChevallier, M. W., S. C. Cameron, and G. A. McFeters. 1983. New medium for the recovery of coliform bacteria from drinking water. Appl. Environ. Microbiol. 45:484–492.PubMedGoogle Scholar
  44. 44.
    LeChevallier, M. W., A. Singh, D. A. Schiemann, and G. A. McFeters. 1985. Changes in virulence of waterborne enteropathogens with chlorine injury. Appl. Environ. Microbiol. 50:412–419.PubMedGoogle Scholar
  45. 45.
    LeChevallier, M. W., and G. A. McFeters. 1984. Recent advances in coliform methodology. J. Environ. Health 47:5–9.Google Scholar
  46. 46.
    LeChevallier, M. W., and G. A. McFeters. 1985. Enumerating injured conforms in drinking water. J. Am. Water Works Assoc. 77:81–87.Google Scholar
  47. 47.
    LeChevallier, M. W., P. E. Jakanoski, A. K. Camper, and G. A. McFeters. 1984. Evaluation of m-T7 agar as a fecal coliform medium. Appl. Environ. Microbiol. 48:371–375.PubMedGoogle Scholar
  48. 48.
    LeChevallier, M. W., A. K. Camper, S. C. Broadaway, J. M. Henson, and G. A. McFeters. 1987. Sensitivity of genetically engineered organisms to selective media. Appl. Environ. Microbiol. 53:606–609.PubMedGoogle Scholar
  49. 49.
    LeChevallier, M. W., C. D. Lowry, and R. G. Lee. 1990. Disinfecting biofilms in a model distribution system. J. Am. Water Works Assoc. 82(7):87–99.Google Scholar
  50. 50.
    LeChevallier, M. W., C. D. Lowry, R. G. Lee, and D. L. Gibbon. 1993. Examining the relationship between iron corrosion and the disinfection of biofilm bacteria. J. Am. Water Works Assoc. 85(7): 111–123.Google Scholar
  51. 51.
    Leyer, G. J., and E. A. Johnson. 1993. Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl. Environ. Microbiol. 59:1842–1847.PubMedGoogle Scholar
  52. 52.
    Lin, S. 1973. Evaluation of coliform tests for chlorinated secondary effluents. J. Water Pollut. Control Fed. 45:498–506.PubMedGoogle Scholar
  53. 53.
    Lin, S. 1976. Membrane filter method for recovery of coliforms in chlorinated sewage effluents. Appl. Environ. Microbiol. 32:547–552.PubMedGoogle Scholar
  54. 54.
    Litsky, W. 1979. Gut critters are stressed in the environment, more stressed by isolation procedures, p. 345–347. In R. R. Colwell and J. Foster (ed.), Aquatic Microbial Ecology. A Maryland Sea Grant Publication, College Park, Md.Google Scholar
  55. 55.
    Loyer, M. W., and M. A. Hamilton. 1984. Interval estimation of the density of organisms using a serial-dilution experiment. Biometrics 40:907–916.PubMedCrossRefGoogle Scholar
  56. 56.
    Mackey, B. M. 1984. Lethal and sublethal effects of refrigeration and freeze-drying on microorganisms, p. 46–76. In M. H. E. Andrew and A. D. Russell (ed.), Revival of Injured Microbes. Academic Press, London, United Kingdom.Google Scholar
  57. 57.
    MacLeod, R. A., S. C. Kuo, and R. Gelinas. 1967. Metabolic injury to bacteria. II. Metabolic injury induced in distilled water or Cu in plating diluent. J. Bacteriol. 93:961–969.PubMedGoogle Scholar
  58. 58.
    McFeters, G. A. 1989. Detection and significance of injured indicator and pathogenic bacteria in water, p. 179–210. In B. Ray (ed.), Injured Index and Pathogenic Bacteria: Occurrence and Detection in Foods, Water and Feeds. CRC Press, Boca Raton, Fla.Google Scholar
  59. 59.
    McFeters, G. A. 1990. Enumeration, occurrence and significance of injured indicator bacteria in drinking water, p. 478–492. In G. A. McFeters (ed.), Drinking Water Microbiology. Progress and Recent Developments. Springer-Verlag, New York, N.Y.CrossRefGoogle Scholar
  60. 60.
    McFeters, G. A., J. S. Kippin, and M. W. LeChevallier. 1986. Injured coliforms in drinking water. Appl. Environ. Microbiol. 51:1–5.PubMedGoogle Scholar
  61. 61.
    McFeters, G. A., and D. G. Stuart. 1972. Survival of coliform bacteria in natural waters; field and laboratory studies with membrane filter chambers. Appl. Microbiol. 24:805–811.PubMedGoogle Scholar
  62. 62.
    McFeters, G. A., and A. K. Camper. 1983. Enumeration of indicator bacteria exposed to chlorine. Adv. Appl. Microbiol. 29:177–193.PubMedCrossRefGoogle Scholar
  63. 63.
    McFeters, G. A., Cameron, S. C., and M. W. LeChevallier. 1982. Influence of diluents, media and membrane filters on the detection of injured coliform bacteria. Appl. Environ. Microbiol. 43: 97–103.PubMedGoogle Scholar
  64. 64.
    McFeters, G. A., S. C. Brodaway, B. H. Pyle, M. Pickett, and Y. Egozy. 1997. Comparative performance of Colisure. J. Am. Water Works Assoc. 89(9): 112–120.PubMedGoogle Scholar
  65. 65.
    McFeters, G. A., B. H. Pyle, S. J. Gillis, D. Ferrazza, and C. J. Acomb. 1991. Effect of chlorine on the comparative performace of ColisureTM, ColiLertTM and ColiQuickTM for the enumeration of coliform bacteria and E. coli in drinking water, p. 493–495. Technology Conference Proceedings, American Water Works Association, Denver, Colo.Google Scholar
  66. 66.
    McFeters, G. A., B. H. Pyle, S. J. Gillis, C. J. Acomb, and D. Ferrazza. 1993. Chlorine injury and the comparative performace of ColisureTM, ColiLertTM and ColiQuickTM for the enumeration of coliform bacteria and E. coli in drinking water. Water Sci. Tech. 27:261–265.Google Scholar
  67. 67.
    Means, E. A., L. Hanami, H. F. Ridgway, and B. H. Olson. 1981. Evaluating mediums and plating techniques for enumerating bacteria in water distribution systems. J. Am. Water Works Assoc. 73(11): 585–590.Google Scholar
  68. 68.
    Milbauer, R., and N. Grossowicz. 1959. Reactivation of chlorine-inactivated E. coli. Appl. Microbiol 7:67–70.PubMedGoogle Scholar
  69. 69.
    Moss, S. K., and K. C. Smith. 1981. Membrane damage can be a significant factor in the inactivation of Escherichia coli by near-ultraviolet radiation. Photochem. Photobiol. 33:203–210.PubMedCrossRefGoogle Scholar
  70. 70.
    Mossel, D. A., and P. van Netten. 1984. Harmful effects of selective media on stressed microorganisms: nature and remedies, p. 329–371. In M. H. E. Andrew and A. D. Russell (ed.), The Revival of Injured Microbes. Academic Press, London, United Kingdom.Google Scholar
  71. 71.
    Mossel, D. A., and J. E. L. Corry. 1977. Detection and enumeration of sublethally injured pathogenic and index bacteria in foods and water processed for safety. Alimentia 16(Special Issue): 19–34.Google Scholar
  72. 72.
    Mudge, C. S., and F. R. Smith. 1935. Relation of action of chlorine to bacterial death. Am. J. Public Health 25:442–447.CrossRefGoogle Scholar
  73. 73.
    O’Connor, J. T., L. Hash, and A. B. Edwards. 1975. Deterioration of water quality in distribution systems. J. Am. Water Works Assoc. 67:113–116.Google Scholar
  74. 74.
    Ray, B. 1979. Current methods to detect stressed microorganisms. J. Food Protect. 42:346–355.Google Scholar
  75. 75.
    Ray, B. 1989. Enumeration of injured indicator bacteria from foods, p. 9–54. In B. Ray (ed.), Injured Index and Pathogenic Bacteria: Occurrence and Detection in Foods, Water and Feeds. CRC Press, Boca Raton, Fla.Google Scholar
  76. 76.
    Ray, B. 1989. Introduction, p. 1–8. In B. Ray (ed.), Injured Index and Pathogenic Bacteria: Occurrence and Detection in Foods, Water and Feeds. CRC Press, Boca Raton, Fla.Google Scholar
  77. 77.
    Ray, B. 1993. Sublethal injury, bacteriocins and food microbiology. ASM News 59:285–291.Google Scholar
  78. 78.
    Roth, L. A., and D. Leenan. 1971. Acid injury of E. coli. Can. J. Microbiol. 17:1005–1008.PubMedCrossRefGoogle Scholar
  79. 79.
    Roszak, D. B., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365–379.PubMedGoogle Scholar
  80. 80.
    Roszak, D. B., D. J. Grimes, and R. R. Colwell. 1984. Viable but nonrecoverable stage of S. enteritidis in aquatic systems. Can. J. Microbiol. 30:334–338.PubMedCrossRefGoogle Scholar
  81. 81.
    Russell, A. D. 1984. Potential sites of damage in microorganisms exposed to chemical or physical agents, p. 1–18. In M. H. E. Andrew and A. D. Russell (ed.), The Revival of Injured Microbes. Academic Press, London, United Kingdom.Google Scholar
  82. 82.
    Schusner, D. L., F. F. Busta, and M. L. Speck. 1971. Inhibition of injured E. coli by several selective agents. Appl. Microbiol. 21:41–45.Google Scholar
  83. 83.
    Shih, K. L., and J. Lederberg. 1976. Effects of chloramine on B. subtilis deoxyribonucleic acid. J. Bacteriol. 125:934–945.Google Scholar
  84. 84.
    Shipe, E. L., and G. M. Cameron. 1952. A comparison of the membrane filter with most probable number method for coliform determination from several waters. Appl. Microbiol. 2:85–87.Google Scholar
  85. 85.
    Singh, A., R. Yeager, and G. A. McFeters. 1986. Assessment of in vivo revival, growth and pathogenicity of E. coli strains after copper and chlorine injury. Appl. Environ. Microbiol. 52:832–837.PubMedGoogle Scholar
  86. 86.
    Singh, A., and G. A. McFeters. 1987. Survival and virulence of copper-and chlorine-stressed Y. enterocolitica in experimentally infected mice. Appl. Environ. Microbiol. 53:1768–1774.Google Scholar
  87. 87.
    Smith, J. J., J. P. Howington, and G. A. McFeters. 1994. Survival, physiological response and recovery of enteric bacteria exposed to a polar marine environment. Appl. Environ. Microbiol. 60: 2977–2984.PubMedGoogle Scholar
  88. 88.
    Stewart, R. S., T. Griebe, R. Srinivasan, C.-I. Chen, F. P. Yu, D. deBeer, and G. A. McFeters. 1994. Comparison of respiratory activity and culturability during monochloramine disinfection of binary population biofilms. Appl. Environ. Microbiol. 60:1690–1692.PubMedGoogle Scholar
  89. 89.
    Terzieva, S. I., and G. A. McFeters. 1992. Effect of chlorine on some virulence-related properties of C. jejuni. Int. J. Environ. Health Res. 2:24–32.CrossRefGoogle Scholar
  90. 90.
    Tessman, E. S., and P. Peterson. 1985. Plaque color method for rapid isolation of novel reck mutants of E. coli K-12: new classes of protease-constitutive reck mutants. J. Bacteriol. 163:677–687.PubMedGoogle Scholar
  91. 91.
    VanBogelen, R. A., and F. C. Neidhardt. 1990. Global systems approach to bacterial physiology: protein responders to stress and starvation. FEMS Microb. Ecol. 74:121–128.CrossRefGoogle Scholar
  92. 92.
    Venkobacchar, C., L. Lyengar, and A. V. S. P. Rao. 1977. Mechanism of disinfection: effect of chlorine on cell membrane functions. Water Res. 11:727–729.CrossRefGoogle Scholar
  93. 93.
    Verville, K. M., and D. S. Herson. 1989. The effect of free chlorine on E. coli populations. Curr. Microbiol. 78:235–241.CrossRefGoogle Scholar
  94. 94.
    Walsh, S. M., and G. K. Bissonnette. 1983. Chlorine-induced damage to surface adhesins during sublethal injury to enterotoxigenic E. coli. kppl. Environ. Microbiol. 45:1060–1065.Google Scholar
  95. 95.
    Walsh, S. M., and G. K. Bissonnette. 1987. Effect of chlorine injury on heat-labile enterotoxin production in enterotoxigenic E. coli. Can. J. Microbiol. 33:1091–1096.PubMedCrossRefGoogle Scholar
  96. 96.
    Watters, S. K., B. H. Pyle, M. W. LeChevallier, and G. A. McFeters. 1989. Enumeration of E. cloacae after chloramine exposure, kppl. Environ. Microbiol. 55:3226–3228.Google Scholar
  97. 97.
    Williams, N. D., and A. D. Russell. 1992. Increased susceptibility of injured spores of B. subtilis to cationic and other stressing agents. Lett. kppl. Microbiol. 15:253–255.CrossRefGoogle Scholar
  98. 98.
    Williams, N. D., and A. D. Russell. 1992. The nature and site of biocide-induced sublethal injury in B. subtilis spores. FEMS Microbiol. Lett. 99:277–280.CrossRefGoogle Scholar
  99. 99.
    Wortman, A. T., and G. K. Bissonnette. 1985. Injury and repair of E. coli damaged by exposure to acid mine water. Water Res. 19:1291–1297.CrossRefGoogle Scholar
  100. 100.
    Wright, J. H. 1917. The importance of uniform culture media in the bacteriological examination of disinfectants. J. Bacteriol. 2:315–346.PubMedGoogle Scholar
  101. 101.
    Xu, H., N. Roberts, S. L. Singleton, R. W. Attwell, D. J. Grimes, and R. R. Colwell. 1982. Survival and viability of nonculturable E. coli and V. cholerae in estuarine and marine environments. Microb. Ecology 8:313–323.CrossRefGoogle Scholar
  102. 102.
    Yoshida, Y., N. Takamatsu, and M. Yoshikawa. 1978. Preferential inhibitory action of sodium cholate on an Escherichia coli strain carrying a plasmid in an integrated state. J. Bacteriol. 133: 406–408.PubMedGoogle Scholar
  103. 103.
    Yu, F. P., and G. A. McFeters. 1994. Physiological response of bacteria in biofilms to disinfection. kppl. Environ. Microbiol. 60:2462–2466.Google Scholar
  104. 104.
    Zaske, S. K., W. S. Dockins, and G. A. McFeters. 1980. Cell envelope damage in E. coli caused by short-term stress in water. kppl Environ. Microbiol. 40:386–390.Google Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Gordon A. McFeters
    • 1
  • Mark W. LeChevallier
    • 2
  1. 1.Microbiology Department and Center for Biofilm EngineeringMontana State UniversityBozemanUSA
  2. 2.American Water Works Service Co. Inc.VoorheesUSA

Personalised recommendations