Advertisement

Implications of the Viable but Nonculturable State in Risk Assessment Based on Field Testing of Genetically Engineered Microorganisms

  • Morris A. Levin
  • J. Scott Angle

Abstract

The importance of the viable but nonculturable (VBNC) state, with respect to safety of environmental applications of genetically engineered microorganisms (GEMs), can best be appreciated in risk assessment. This can be achieved through knowledge of the survival of microorganisms released into specific environments, their characteristics expressed in response to the specific environment, and how these factors relate to the VBNC. From such data, it should be possible to determine whether a GEM will become VBNC and to estimate efficacy and probability of any adverse ecological and/or health effects.

Keywords

Risk Assessment Nalidixic Acid Plate Count VBNC State Swine Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S. 1981. Chemical Communication at the Microbial Level, p. 30–33. CRC Press, Baton Rouge, Fla.Google Scholar
  2. 2.
    American Public Health Association. 1989. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, D.C.Google Scholar
  3. 3.
    Atlas, R. 1992. Detection and enumeration of microorganisms based upon phenotype, p. 29–43. In M. A. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York, N.Y.Google Scholar
  4. 4.
    Bakhrouf, A., M. Jeddi, A. Bouddabous, and M. J. Gauthier. 1989. Evolution of Pseudomonas aeruginosa cells towards a filterable stage in seawater. FEMS Mic. Lett. 59:187–190.CrossRefGoogle Scholar
  5. 5.
    Bej, A. K., M. H. Mahbubani, and R. M. Atlas. 1991. Detection of viable Legionella pneumophila in water by polymerase chain reaction and gene probe methods. Appl. Environ. Microbiol. 57:597–600.PubMedGoogle Scholar
  6. 6.
    Bej, A. K., M. Perlin, and R. M. Atlas. 1991. Effect of introducing genetically-engineered microorganisms on soil microbial community diversity. FEMS Microbiol. Lett. 86:(2) 169–175.CrossRefGoogle Scholar
  7. 7.
    Berry, C., B. J. Lloyd, and J. S. Colbourne. 1991. Effect of heat shock on recovery of Escherichia coli from drinking water, p. 85–88. In W. O. K. Grabow, R. Morris, and K. Botzenhart, (ed.), Health Related Water Microbiology. Int. Symp. On Health-Related Water Microbiology, Tuebingen (FRG), 1–6 April 1990. IAWPRC, Tuebingen, Germany.Google Scholar
  8. 8.
    Beumer, R. R., J. De Vries, and F. M. Rombouts. 1992. Campylobacter jejuni non-culturable coccoid cells. Int. J. Food Microbiol. 15:153–163.PubMedCrossRefGoogle Scholar
  9. 9.
    Brauns, L. A., M. C. Hudson, and J. D. Oliver. 1991. Use of the polymerase chain reaction in detection of culturable and nonculturable Vibrio vulnificus cells. Appl. Environ. Microbiol. 57:2651–2655.PubMedGoogle Scholar
  10. 10.
    Brayton, P. R., M. L. Tamplin, A. Huq, and R. R. Colwell. 1987. Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent-antibody direct viable count. Appl. Environ. Microbiol. 53: 2862–2865.PubMedGoogle Scholar
  11. 11.
    Byrd, J. J., and R. R. Colwell. 1990. Maintenance of plasmids pBR322 and pUC8 in nonculturable Escherichia coli in the marine environment. Appl. Environ. Microbiol. 56:2104–2107.PubMedGoogle Scholar
  12. 12.
    Byrd, J. J., and R. R. Colwell. 1992. Microscopic applications for analysis of environmental samples, p. 607–623. In M. A. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York, N.Y.Google Scholar
  13. 13.
    Byrd, J. J., H. S. Xu, and R. R. Colwell. 1991. Viable but nonculturable bacteria in drinking water. Appl. Environ. Microbiol. 57:875–878.PubMedGoogle Scholar
  14. 14.
    Chaudhry, G. R., G. A. Toranzos, and A. R. Bhatti. 1989. Novel method for monitoring genetically engineered microorganisms in the environment. Appl. Environ. Microbiol. 55:1301–1304.PubMedGoogle Scholar
  15. 15.
    Dawes, E. A. 1976. Endogenous metabolism and the survival of starved prokaryotes, p. 19–24. In T. R. G. Gray and J. R. Postgate (ed.), The Survival of Vegetative Microbes. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  16. 16.
    Dawson, M. P., B. A. Humphrey, and K. C. Marshall. 1981. Adhesion: a tactic in the survival strategy of a marine vibrio during starvation. Curr. Microbiol. 6:195–199.CrossRefGoogle Scholar
  17. 17.
    Deng, M. Y., and D. O. Oliver. 1992. Degradation of Giardia lamblia cysts in mixed human and swine wastes. Appl. Environ. Microbiol. 58:2368–2374.PubMedGoogle Scholar
  18. 18.
    Dockendorf, T. C., A. Breen, O. A. Oguntseitan, J. G. Packard, and G. S. Sayler. 1992. Practical considerations of nucleic acid hybridization and reassociation techniques in environmental analysis, p. 286–311 and 393-419. In M. A. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York, N.Y.Google Scholar
  19. 19.
    Farrand, S. K. 1992. Conjugal gene transfer on plants, p. 607–623. In M. A. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York, N.Y.Google Scholar
  20. 20.
    Fisk, J., and Covello, V. T. 1986. Biotechnology Risk Assessment, p. 1–125. Pergamon Press, Elmsford, N.Y.Google Scholar
  21. 21.
    Fredrickson, J. K., and C. Hagedorn. 1992. Identifying ecological effects from the release of genetically engineered microorganisms and microbial pest control agents, p. 327–344. In M. A. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York, N.Y.Google Scholar
  22. 22.
    Gealt, M. A. 1992. Gene transfer in wastewater, p. 327–344. In M. A. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York, N.Y.Google Scholar
  23. 23.
    Hobbie, J. E., R. J. Daley, and S. Jasper. 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33:1225–1228.PubMedGoogle Scholar
  24. 24.
    Heinmets, F., W. W. Taylor, and J. J. Lehman. 1953. The use of metabolites on the restoration of the viability of heat and chemically inactivated Escherichia coli. J. Bacteriol. 67:5–14.Google Scholar
  25. 25.
    Islam, M. S., M. K. Hasan, M. A. Miah, G. C. Sur, A. Felsenstein, M. Venkatesan, R. B. Sack, and M. J. Albert. 1993. Use of the polymerase chain reaction and fluorescent antibody methods for detecting viable but nonculturable Shigella dysenteria type 1 in laboratory microcosms. Appl. Environ. Microbiol. 59:536–540.PubMedGoogle Scholar
  26. 26.
    Jannasch, H. W. 1979. Microbial ecology of aquatic low nutrient habitats, p. 243–260. In M. Shilo (ed.), Strategies of Microbial Life in Extreme Environments. Verlag Chemie, Weinheim, Germany.Google Scholar
  27. 27.
    Jannasch, H. W., and G. E. Jones. 1959. Bacterial populations in seawater by different methods of enumeration. Limnol. Oceanogr. 4:128–139.CrossRefGoogle Scholar
  28. 28.
    Jolivet-Gougeon, J., A. S. Baux, F. Sauvager, M. Arturo-Schaan, and M. Cormier. 1996. Influence of peracetic acid on Escherichia coli H10407 strain in laboratory microcosms. Can. J. Microbiol. 42:60–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Kandel, A., O. Nybroe, and O. F. Rasmussen. 1992. Survival of 2,4-dichlorophenoxyacetic acid degrading Alcaligenes eutrophus AEO 106(pR0101) in lake water microcosms. Microb. Ecol. 24: 291–303.CrossRefGoogle Scholar
  30. 30.
    Kjelleberg, S., B. A. Humphrey, and K. C. Marshall. 1983. Initial phase of starvation and activity of bacteria at surfaces. Appl. Environ. Microbiol. 46:978–984.PubMedGoogle Scholar
  31. 31.
    Klein, D. A. 1992. Measurement of microbial population dynamics: significance and methodology, p. 607–623. In M. A. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York, N.Y.Google Scholar
  32. 32.
    Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415–420.PubMedCrossRefGoogle Scholar
  33. 33.
    LeChevallier, M. W., W. D. Norton, and R. G. Lee. 1991. Giardia and Cryptosporidium spp. in filtered drinking water supplies. Appl. Environ. Microbiol. 57:2617–2621.PubMedGoogle Scholar
  34. 34.
    Leser, T. D., M. Boye, and N. B. Hendriksen. 1995. Survival and activity of Pseudomonas sp. strain B13 (FRI) in a marine microcosm determined by quantitative PCR and an rRNA-targeting probe and its effect on the indigenous bacterioplankton. Appl. Environ. Microbiol. 61:1201–1207.PubMedGoogle Scholar
  35. 35.
    Leung, K., J. T. Trevors, and H. Lee. 1995. Survival and lacZ expression in recombinant Pseudomonas strains introduced into river water microcosms. Can. J. Microbiol. 41:461–469.PubMedCrossRefGoogle Scholar
  36. 36.
    Levin, M. A. and H. Strauss. 1991. Risk Assessment in Genetic Engineering, p. 60–87. McGraw-Hill, New York, N.YGoogle Scholar
  37. 37.
    Levin, S. A., and M. A. Harwell. 1986. Potential ecological consequences of genetically engineered organisms. Env. Management 10:495–513.CrossRefGoogle Scholar
  38. 38.
    Levin, M. A., R. J. Seidler, and M. Rogul. (ed.). 1992. Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York, N.YGoogle Scholar
  39. 39.
    Levin, M. A., R. J. Seidler, A. R. Bourquin, J. Fowle III, and T. Barkay. 1987. EPA developing methods to assess environmental release. Bio/Technology. 5:38–45.CrossRefGoogle Scholar
  40. 40.
    Linder, K., and J. D. Oliver. 1989. Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55:2837–2842.PubMedGoogle Scholar
  41. 41.
    Lovins, K. W., J. S. Angle, J. L. Weber, and R. L. Hill. 1993. Leaching of Pseudomonas aeruginosa and transconjugants through unsaturated, intact soil columns. FEMS Microbiol. Ecol. 13: 105–112.CrossRefGoogle Scholar
  42. 42.
    Luscombe, B. M., and T. R. G. Gray. 1971. Effect of varying growth rate on morphology of Arthobacter. J. Gen. Microbiol. 69:433–448.Google Scholar
  43. 43.
    Manahan, S. H., and T. R. Steck. 1996. VBNC state in Agrobacterium tumefaciens and Rhizobium meliloti. FEMS Microbiol. Lett. 22(1):39–48.Google Scholar
  44. 44.
    Magarinos, B., J. L. Romalde, J. L. Bartha, and A. E. Torzano. 1993. Evidence of a dormant but infective state of the fish pathogen Pasteurella piscicida in seawater and sediment. Appl. Environ. Microbiol. 60(1): 180–186.Google Scholar
  45. 45.
    Medema, G. J., F. M. Schets, A. W. Giessen, and A. H. van de Havelaar. 1992. Lack of colonization of 1 day old chicks by viable, nonculturable Campylobacter jejuni. J. Appl. Bacteriol. 72: 512–516.PubMedCrossRefGoogle Scholar
  46. 46.
    Morgan, J. A. W., G. Rhodes, and R. W. Pickup. 1993. Survival of nonculturable Aeromonas salmonicida in lake water. Appl. Environ. Microbiol. 59:874–880.PubMedGoogle Scholar
  47. 47.
    Morita, R. Y. 1992. Survival and recovery of microorganisms from environmental samples, p. 607–633. In M. A. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York, N.Y.Google Scholar
  48. 48.
    National Academy of Sciences. 1983. Risk Assessment, p. 83–111. National Research Council, Washington, D.C.Google Scholar
  49. 49.
    National Academy of Sciences. 1987. Introduction of Recombinant DNA Engineered Organisms into the Environment, p. 75–115. National Research Council, Washington, D.C.Google Scholar
  50. 50.
    National Academy of Sciences. 1989. Field Testing of Genetically Engineered Organisms in the Environment, p. 87–93. National Research Council, Washington, D.C.Google Scholar
  51. 51.
    Nilsson, L., J. D. Oliver, and S. Kjelleberg. 1991. Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J. Bacteriol. 173:5054–5059.PubMedGoogle Scholar
  52. 52.
    Office of Technology Assessment. 1986. New Developments in Biotechnology. Field Testing Engineered Organisms, p. 75–79. Office of Technology Assessment, Washington, D.C.Google Scholar
  53. 53.
    Oliver, J. D., L. Nilsson, and S. Kjelleberg. 1991. Formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl. Environ. Microbiol. 57:2640–2644.PubMedGoogle Scholar
  54. 54.
    Pathak, S. P., and J. W. Bhattacherjee. 1994. Effect of pollutants on the survival of Escherichia coli in microcosms of river water. Bull Environ. Contam. 53:198–203.CrossRefGoogle Scholar
  55. 55.
    Pedersen, J. C., and C. S. Jacobsen. 1993. Fate of Enterobacter cloacae JP120 and Alcaligenes eutrophus AE0106 (pROlOl) in soil during water stress: effects on culturability and viability. Appl. Environ. Microbiol. 59:1560–1564.PubMedGoogle Scholar
  56. 56.
    Postgate, J. R. 1976. Death in macrobes and microbes, p. 1–19. In T. R. G. Gray and J. R. Postgate (ed.), The Survival of Vegetative Microbes. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  57. 57.
    Rahman, I., M. Shahamat, M. A. R. Chowdry, and R. R. Colwell. 1996. Potential virulence of viable but nonculturable Shigella dysenteriae Type 1. Appl. Environ. Microbiol. 62:115–120.PubMedGoogle Scholar
  58. 58.
    Rice, S. A., and J. D. Oliver. 1992. Starvation response of the marine barophile CNPT3. Appl. Environ. Microbiol. 58:2432–2437.PubMedGoogle Scholar
  59. 59.
    Richaume, A., J. S. Angle, and M. J. Sadowsky. 1989. Influence of soil variables on in situ plasmid transfer from Escherichia coli to Rhizobium fredii. Appl. Environ. Microbiol. 55:1730–1734.PubMedGoogle Scholar
  60. 60.
    Rissler, J., and M. Mellon. 1993. Perils Amidst the Promise, p. 4–23. Union of Concerned Scientists, Washington, D.C.Google Scholar
  61. 61.
    Rollins, D. M., and R. R. Colwell. 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52:531–538.PubMedGoogle Scholar
  62. 62.
    Rose, A. S., A. E. Ellis, and A. L. S. Munro. 1990. Evidence against dormancy in the bacterial fish pathogen Aeromonas salmonicida subsp. Salmonicida. FEMS Microbiol. Lett. 68:105–108.CrossRefGoogle Scholar
  63. 63.
    Roszak, D. B., and R. R. Colwell. 1987. Metabolic activity of bacterial cells enumerated by direct viable count. Appl. Environ. Microbiol. 53:2889–2893.PubMedGoogle Scholar
  64. 64.
    Roszak, D. B., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365–379.PubMedGoogle Scholar
  65. 65.
    Saha, S. K., S. Saha, and S. C. Sanyal. 1991. Recovery of injured Campylobacter jejuni cells after animal passage. Appl. Environ. Microbiol. 57:3388–3389.PubMedGoogle Scholar
  66. 66.
    Saye, D. J., and S. B. O’Morchoe. 1992. Evaluating the potential for genetic exchange in natural freshwater environments, p. 286–311. In M. A. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York, N.Y.Google Scholar
  67. 67.
    Seidler, R. J., and S. C. Hearn. 1988. EPA Special Report: the Release of Ice Minus Recombinant Bacteria at California Test Sites. U.S. Environmental Protection Agency, Corvallis, Oreg.Google Scholar
  68. 68.
    Selenska, S., and W. Klingmuller. 1991. Direct detection of nif-gene sequences of Enterobacter agglomerans in soil. FEMS Microbiol. Lett. 80:243–245.CrossRefGoogle Scholar
  69. 69.
    Short, K. A., J. D. Doyle, R. J. King, R. Seidler, G. Stotzky, and R. H. Olsen. 1991. Effects of 2,4-dichlorophenol, a metabolite of genetically engineered bacteria, and 2,4-dichlorophenoxyacetate on some microorganism-mediated processes in soil. Appl. Environ. Microbiol. 57:412–418.PubMedGoogle Scholar
  70. 70.
    Tiedje, J. M., R. R. Colwell, Y. L. Grossman, R. E. Hodson, R. E. Lenski, R. E. R. N. Mack, and P. J. Regal. 1989. The planned introduction of genetically engineered organisms. Ecological considerations and recommendations. Ecology 70:103–120.CrossRefGoogle Scholar
  71. 71.
    Thrpin, P. E., K. A. Maycroft, C. L. Rowlands, and E. M. H. Wellington. 1993. Viable but nonculturable salmonellas in soil. J. Appl. Bacteriol. 74:421–427.CrossRefGoogle Scholar
  72. 72.
    United States Department of Agriculture (USDA). 1993. Biotechnology risk assessment research grants program. Fed. Reg. Jan 27, 1994. 58:3978–3980.Google Scholar
  73. 73.
    U.S. Environmental Protection Agency. 1978. Microbial Methods for Monitoring the Environment. USEPA 600/8-78-017. U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  74. 74.
    Walter, M. V., and R. J. Seidler. 1992. Measurement of conjugal gene transfer in terrestrial ecosystems, p. 311–326. In M. A. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York, N.Y.Google Scholar
  75. 75.
    Wilson, M., and S. E. Lindow. 1992. Relationship of total viable and culturable cells in ephiphytic populations of Pseudomonas syringae. Appl. Environ. Microbiol. 58:3908–3913.PubMedGoogle Scholar
  76. 76.
    World Health Organization. 1983. Biosafety Manual World Health Organization, Geneva, Switzerland.Google Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Morris A. Levin
    • 1
  • J. Scott Angle
    • 2
  1. 1.University of Maryland Biotechnology InstituteBaltimoreUSA
  2. 2.College of Agriculture and Natural ResourcesUniversity of MarylandCollege ParkUSA

Personalised recommendations