Advertisement

Viable but Nonculturable Cells in Plant-Associated Bacterial Populations

  • Mark Wilson
  • Steven E. Lindow

Abstract

Plants in terrestrial ecosystems are colonized by complex microbial communities composed of bacteria, yeasts, and filamentous fungi. These microbial communities have received much attention because of their effects on plant productivity. While these communities contain some deleterious organisms, such as phytopathogenic bacteria and fungi, they also contain beneficial organisms, such as nitrogen-fixing bacteria, bacteria capable of suppressing plant disease, and bacteria capable of promoting plant growth. Quantification of bacterial populations in these plantassociated microbial communities in epidemiological, pathological, and ecological studies has to date relied almost exclusively upon either plate counts using selective media (4, 48, 87) or upon quantitative immunofluorescence microscopy (13, 28). Only recently have techniques for the quantification of viable or metabolically active bacterial cells become available. Relatively few attempts have been made with plant-associated bacterial species to relate the population size of culturable cells, determined by plating on selective media, with the population size of viable or metabolically active cells (9, 10, 74, 107). The occurrence in these plantassociated microbial communities of a substantial proportion of viable or metabolically active cells which are not culturable would have serious implications for the disciplines of plant pathology, microbial ecology, and phytoremediation.

Keywords

Bacterial Population Pseudomonas Fluorescens Soil Microcosm Phytopathogenic Bacterium Selective Plating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acea, M. J., C. R. Moore, and M. Alexander. 1988. Survival and growth of bacteria introduced into soil. Soil Biol. Biochem. 20:509–515.CrossRefGoogle Scholar
  2. 2.
    Allen-Austin, D., B. Austin, and R. R. Colwell. 1984. Survival of Aeromonas salmonicida in river waters. FEMS Microbiol. Lett. 21:143–146.CrossRefGoogle Scholar
  3. 3.
    Anderson, T. H., and K. H. Domsch. 1985. Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol. Fert. Soils 1:81–89.CrossRefGoogle Scholar
  4. 4.
    Andrews, J. H. 1986. How to track a microbe, p. 14–34. In N. J. Fokkema and J. van den Heuvel (ed.), Microbiology of the Phyllosphere. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  5. 5.
    Armstrong, J. L., G. R. Knudsen, and R. J. Seidler. 1987. Microcosm method to assess survival of recombinant bacteria associated with plants and herbivorous insects. Curr. Microbiol. 15:229–232.CrossRefGoogle Scholar
  6. 6.
    Beattie, G. A., and S. E. Lindow. 1994. Epiphytic fitness of phytopathogenic bacteria: physiological adaptations for growth and survival, p. 1–28. In J. Dangle (ed.), Bacterial Pathogenesis of Plants and Animals: Molecular and Cellular Mechanisms. Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
  7. 7.
    Beattie, G. A., and S. E. Lindow. 1995. The secret life of foliar bacterial pathogens on leaves. Annu. Rev. Phytopathol. 33:145–172.PubMedCrossRefGoogle Scholar
  8. 8.
    Beringer, J. E., and M. J. Bale. 1988. The survival and persistence of genetically-engineered microorganisms, p. 29–46. In M. Sussman, C. H. Collins, F. A. Skinner, and D. E. Stewart-Tull (ed.), The Release of Genetically-Engineered Micro-Organisms. Academic Press, London, United Kingdom.Google Scholar
  9. 9.
    Binnerup, S. J., D. F. Jensen, H. Thordal-Christensen, and J. Sorensen. 1993. Detection of viable, but nonculturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiol. Ecol. 12:97–105.CrossRefGoogle Scholar
  10. 10.
    Binnerup, S. J., and J. Sorensen. 1993. Long term oxidant deficiency in Pseudomonas aeruginosa PA0303 results in cells which are nonculturable under aerobic conditions. FEMS Microbiol. Ecol. 13:79–84.CrossRefGoogle Scholar
  11. 11.
    Blakeman, J. P. 1993. Pathogens in a foliar environment. Plant Pathol. 42:479–493.CrossRefGoogle Scholar
  12. 12.
    Bohlool, B. B., and E. L. Schmidt. 1973. Persistence and competition aspects of Rhizobium japonicum observed in soil by immunofluorescence microscopy. Soil Sci. Am. Proc. 37:561–64.CrossRefGoogle Scholar
  13. 13.
    Bohlool, B. B., and E. L. Schmidt. 1980. The immunofluorescence approach in microbial ecology. Adv. Microb. Ecol. 4:203–241.Google Scholar
  14. 14.
    Bolton, H., Jr., J. K. Fredrickson, S. A. Bentjen, D. J. Workman, S. W. Li, and J. M. Thomas. 1991. Field calibration of soil-core microcosms: fate of a genetically altered rhizobacterium. Microb. Ecol. 21:163–173.CrossRefGoogle Scholar
  15. 15.
    Bowen, G. D., and A. D. Rovira. 1976. Microbial colonization of roots. Annu. Rev. Phytopathol. 14:121–144.CrossRefGoogle Scholar
  16. 16.
    Brayton, P. R., and R. R. Colwell. 1987. Fluorescent antibody staining method for enumeration of viable environmental Vibrio cholerae 01. J. Microbiol. Methods 6:309–314.CrossRefGoogle Scholar
  17. 17.
    Brlansky, R. H., and R. F. Lee. 1990. Detection of Xanthomonas campestris pv. citrumelo from citrus using membrane entrapment immunofluorescence. Plant Dis. 74:863–868.CrossRefGoogle Scholar
  18. 18.
    Bruehl, G. W. 1987. Survival of bacteria in soil, p. 185–195. In Soilborne Plant Pathogens. Macmillan Publishers, Ltd., London, United Kingdom.Google Scholar
  19. 19.
    Bushby, H. V. A., and K. C. Marshall. 1977. Some factors affecting the survival of root-nodule bacteria on desiccation. Soil Biol. Biochem. 9:143–147.CrossRefGoogle Scholar
  20. 20.
    Byrd, J. J., and R. R. Colwell. 1992. Microscopy applications for analysis of environmental samples, p. 93–112. In M. A. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology, Principles, Methods and Applications. McGraw-Hill Inc., New York, N.Y.Google Scholar
  21. 21.
    Byrd, J. J., H.-S. Xu, and R. R. Colwell. 1991. Viable but non-culturable bacteria in drinking water. Appl. Environ. Microbiol. 57:875–878.PubMedGoogle Scholar
  22. 22.
    Colwell, R. R., P. R. Brayton, D. J. Grimes, D. B. Roszak, S. A. Huq, and L. M. Palmer. 1985. Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered micro-organisms. Bio/Technology 3:817–820.CrossRefGoogle Scholar
  23. 23.
    Colwell, R. R., C. Somerville, I. Knight, and W. Straube. 1988. Detection and monitoring of genetically-engineered micro-organisms, p. 47–60. In M. Sussman, C. H. Collins, F. A. Skinner, and D. E. Stewart-Tull (ed.). The Release of Genetically-Engineered Micro-Organisms. Academic Press, London, United Kingdom.Google Scholar
  24. 24.
    Compeau, G., B. J. Al-Achi, E. Platsouka, and S. B. Levy. 1988. Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl. Environ. Microbiol. 54:2432–2438.PubMedGoogle Scholar
  25. 25.
    Crozat, Y., J. C. Cleyet-Marel, J. J. Giraud, and M. Obaton. 1982. Survival rates of Rhizobium japonicum populations introduced into different soils. Soil Biol. Biochem. 14:401–405.CrossRefGoogle Scholar
  26. 26.
    De Boer, S. H. 1982. Survival of phytopathogenic bacteria in soil, p. 285–306. In M. S. Mount and G. H. Lacy (ed.), Phytopathogenic Prokaryotes. Academic Press, London, United Kingdom.Google Scholar
  27. 27.
    De Boer, S. H. 1984. Enumeration of two competing Erwinia carotovora populations in potato tubers by a membrane filter-immunofluorescence procedure. J. Appl. Bacteriol. 57:517–522.CrossRefGoogle Scholar
  28. 28.
    De Boer, S. H. 1990. Immunofluorescence for bacteria, p. 295–298 In R. Hampton, E. Ball, and S. De Boer (ed.), Serological Methods for Detection and Identification of Viral and Bacterial Plant Pathogens. APS Press, Minneapolis, Minn.Google Scholar
  29. 29.
    Defago, G., C. Keel, and Y. Moenne-Loccoz. 1996. Fate of introduced biocontrol agent Pseudomonas fluoresceus CHAO in soil: biosafety considerations, p. 241–245. In T. Wenhua, R. J. Cook, and A. Rovira (ed.), Advances in Biological Control of Plant Diseases. China Agricultural University Press, Beijing, China.Google Scholar
  30. 30.
    Dickinson, C. H. 1986. Adaptations of micro-organisms to climatic conditions affecting aerial plant surfaces, p. 77–100. In N. J. Fokkema and J. van den Heuvel (ed.), Microbiology of the Phyllosphere. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  31. 31.
    Dupler, M., and Baker. 1984. Survival of Pseudomonas putida, a biological control agent, in soil. Phytopathology 74:195–200.CrossRefGoogle Scholar
  32. 32.
    England, L. S., H. Lee, and J. T. Trevors. 1993. Recombinant and wild-type Pseudomonas aureofaciens strains in soil: survival, respiratory activity and effects on nodulation of whitebean Phaseolus vulgaris L. by Rhizobium species. Mol. Ecol. 2:303–313.CrossRefGoogle Scholar
  33. 33.
    England, L. S., H. Lee, and J. T. Trevors. 1995. Recombinant and wild-type Pseudomonas aureofaciens strains introduced into soil microcosms: effect on decomposition of cellulose and straw. Mol. Ecol. 4:221–210.PubMedCrossRefGoogle Scholar
  34. 34.
    Genthner, F. J., J. Upadhyay, R. P. Campbell, and B. R. S. Genthner. 1990. Anomalies in the enumeration of starved bacteria on culture media containing nalidixic acid and tetracycline. Microb. Ecol. 20:283–288.CrossRefGoogle Scholar
  35. 35.
    Griffin, G. W., and R. J. Roughley. 1992. The effect of soil moisture potential on growth and survival of root nodule bacteria in peat culture and on seed. J. Appl. Bacteriol. 73:7–13.CrossRefGoogle Scholar
  36. 36.
    Haas, J. H., and J. Rotem. 1976. Pseudomonas lachrymans adsorption, survival, and infectivity following precision inoculation of leaves. Phytopathology 66:992–997.CrossRefGoogle Scholar
  37. 37.
    Heijnen, C. E., and J. D. van Elsas. 1994. Metabolic activity of bacteria introduced into soil, p. 187–189. In M. H. Ryder, P. M. Stephens, and G. D. Bowen (ed.), Improving Plant Productivity with Rhizobacteria. CSIRO Division of Soils, Adelaide, Australia.Google Scholar
  38. 38.
    Henis, Y., and Y. Bashan. 1986. Epiphytic survival of bacterial leaf pathogens, p. 252–268. In N. J. Fokkema and J. van den Heuvel (ed.), Microbiology of the Phyllosphere. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  39. 39.
    Henson, J. M., and R. French. 1993. The polymerase chain reaction and plant disease diagnosis. Annu. Rev. Phytopathol. 31:81–109.PubMedCrossRefGoogle Scholar
  40. 40.
    Hirano, S. S., and C. D. Upper. 1983. Ecology and epidemiology of foliar bacterial plant pathogens. Annu. Rev. Phytopathol. 21:243–269.CrossRefGoogle Scholar
  41. 41.
    Hirano, S. S., and C. D. Upper. 1989. Diel variation in population size and ice nucleation activity of Pseudomonas syringae snap bean leaflets. Appl. Environ. Microbiol. 55:623–630.PubMedGoogle Scholar
  42. 42.
    Hoff, K. A. 1988. Rapid and simple method for double staining of bacteria with 4′,6-diamidino-2-phenylindole and fluorescein isothiocyanate-labeled antibodies. Appl. Environ. Microbiol. 54:2949–2952.PubMedGoogle Scholar
  43. 43.
    Howie, W. J., R. J. Cook, and D. M. Weller. 1987. Effect of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77: 286–292.CrossRefGoogle Scholar
  44. 44.
    Hussong, D., R. R. Colwell, M. O’Brien, E. Weiss, A. D. Pearson, R. M. Weiner, and W. D. Burge. 1987. Viable Legionella pneumophila not detectable by culture on agar media. Bio / Technology 5:947–950.Google Scholar
  45. 45.
    Keel, C., M. Zala, J. Troxler, A. Natsch, H. A. Pfirter and G. Defago. 1994. Application of biocontrol strain Pseudomonas fluorescens CHAO to standard soil-columns and field-scale lysimeters. I. Survival and vertical translocation, p. 255–257. In M. H. Ryder, P. M. Stephens, and G. D. Bowen (ed.), Improving Plant Productivity with Rhizobacteria. CSIRO Division of Soils, Adelaide, Australia.Google Scholar
  46. 46.
    Kloepper, J. W., and C. J. Beauchamp. 1992. A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol. 38:1219–1232.CrossRefGoogle Scholar
  47. 47.
    Klotz, M. G. 1993. The importance of bacterial growth phase for in planta virulence and pathogenicity testing: co-ordinated stress response regulation in fluorescent pseudomonads. Can. J. Microbiol. 39:948–957.CrossRefGoogle Scholar
  48. 48.
    Kluepfel, D. A. 1993. The behavior and tracking of bacteria in the rhizosphere. Annu. Rev. Phytopathol. 31:441–472.CrossRefGoogle Scholar
  49. 49.
    Knudsen, G. R. 1991. Models for the survival of bacteria applied to the foliage of crop plants, p. 191–216. In C. J. Hurst (ed.), Modeling the Environmental Fate of Microorganisms. American Society for Microbiology, Washington, D.C.Google Scholar
  50. 50.
    Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415–420.PubMedCrossRefGoogle Scholar
  51. 51.
    Leben, C. 1965. Epiphytic microorganisms in relation to plant disease. Annu. Rev. Phytopathol. 3: 209–230.CrossRefGoogle Scholar
  52. 52.
    Leben, C. 1981. How plant-pathogenic bacteria survive. Plant Dis. 65:633–637.CrossRefGoogle Scholar
  53. 53.
    Liang, L. N., J. L. Sinclair, L. M. Mallory, and M. Alexander. 1982. Fate in model ecosystems of microbial species of potential use in genetic engineering. Appl. Environ. Microbiol. 44:708–714.PubMedGoogle Scholar
  54. 54.
    Linder, K., and J. D. Oliver. 1989. Membrane fatty acid and virulence changes in the viable but non-culturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55:2837–2842.PubMedGoogle Scholar
  55. 55.
    Lindow, S. E. 1991. Determinants of epiphytic fitness in bacteria, p. 295–314. In J. H. Andrews and S. S. Hirano (ed.), Microbial Ecology of Leaves. Brock/Springer, New York, N.Y.CrossRefGoogle Scholar
  56. 56.
    Loper, J. E., C. Haack, and M. N. Schroth. 1985. Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl. Environ. Microbiol. 49:416–422.PubMedGoogle Scholar
  57. 57.
    Lynch, J. M. 1990. Longevity of bacteria: considerations in environmental release. Curr. Microbiol. 20:387–389.CrossRefGoogle Scholar
  58. 58.
    Manahan, S. H., and T. R. Steck. 1997. The viable but nonculturable state in Agrobacterium tumefaciens and Rhizobium meliloti. FEMS Microbiol. Ecol. 22:29–37.CrossRefGoogle Scholar
  59. 59.
    Mansvelt, E. L., and M. J. Hattingh. 1988. Resident populations of Pseudomonas syringae pv. syringae on leaves, blossoms, and fruits of apple and pear trees. J. Phytopathology 121:135–142.CrossRefGoogle Scholar
  60. 60.
    McInroy, J. A., G. Wei, G. Musson, and J. W. Kloepper. 1992. Evidence for possible masking of rifampicin-resistance phenotype of marked bacteria in planta. Phytopathology 82:1177 (abstract).Google Scholar
  61. 61.
    Morita, R. Y. 1985. Starvation and miniaturization of heterotrophs, with special emphasis on maintenance of the starved viable state, p. 11–130. In M. Fletcher and G. D. Floodgate (ed.), Bacteria in Their Natural Environments. Academic Press, London, United Kingdom.Google Scholar
  62. 62.
    Morita, R. Y. 1988. Bioavailability of energy and its relationship to growth and starvation survival in nature. Can. J. Microbiol. 34:436–441.CrossRefGoogle Scholar
  63. 63.
    Mossel, D. A. A., and P. Van Netten. 1984. Harmful effects of selective media on stressed microorganisms: nature and remedies, p. 329–369. In M. H. E. Andrew and A. D. Russell (ed.), The Revival of Injured Microbes. Academic Press, New York, N.Y.Google Scholar
  64. 64.
    Normander, B., N. B. Hendrickson, and O. Nybroe. 1999. Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability and activity in the natural barley rhizosphere. Appl. Environ. Microbiol. 65:4646–4651.PubMedGoogle Scholar
  65. 65.
    Norton, J. M., and M. K. Firestone. 1991. Metabolic status of bacteria and fungi in the rhizosphere of ponderosa pine seedlings. Appl. Environ. Microbiol. 57:1161–1167.PubMedGoogle Scholar
  66. 66.
    Oliver, J. D. 1993. Formation of viable but non-culturable cells, p. 239–272. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.Y.Google Scholar
  67. 67.
    Oliver, J. D., L. Nilsson, and S. Kjellberg. 1991. Formation of nonculturable Vibrio vulnificus cells and its relation to the starvation state. Appl. Environ. Microbiol. 57:2640–2644.PubMedGoogle Scholar
  68. 68.
    Olsen, R. A., and L. R. Bakken. 1987. Viability of soil bacteria: optimization of plate counting technique and comparison between total counts and plate counts within different size groups. Microb. Ecol. 13:59–74.CrossRefGoogle Scholar
  69. 69.
    Orvos, D. R., G. H. Lacy, and J. Cairns, Jr. 1990. Genetically engineered Erwinia carotovora: survival, intraspecific competition, and effects upon selected bacterial genera. Appl. Environ. Microbiol. 56:1689–1694.PubMedGoogle Scholar
  70. 70.
    Osa-Afiana, L. O., and M. Alexander. 1982. Differences among cowpea rhizobia in tolerance to high temperature and desiccation in soil. Appl. Environ. Microbiol. 43:435–439.PubMedGoogle Scholar
  71. 71.
    Pedersen, J. C. 1992. Survival of Enterobacter cloacae: field validation of a soil/plant microcosm. Microb. Releases 1:87–93.Google Scholar
  72. 72.
    Pedersen, J. C., and C. S. Jacobsen. 1993. Fate of Enterobacter cloacae JP120 and Alcaligenes eutrophus AEO106(pRO101) in soil during water stress: effects on culturability and viability. Appl. Environ. Microbiol. 59:1560–1564.PubMedGoogle Scholar
  73. 73.
    Pedersen, J. C., and T. D. Leser. 1992. Survival of Enterobacter cloacae on leaves and in soil detected by immunofluorescence microscopy in comparison with selective plating, p. 245–247. In D. E. S. Stewart-Tull and M. Sussman (ed.), The Release of Genetically Modified Organisms. Plenum Press, New York, N.Y.CrossRefGoogle Scholar
  74. 74.
    Pedersen, J. C., and T. D. Leser. 1992. Survival of Enterobacter cloacae on leaves and in soil detected by immunofluorescence microscopy in comparison with selective plating. Microb. Releases 1:95–102.Google Scholar
  75. 75.
    Pillai, S. D., and I. L. Pepper. 1991. Transposon Tn5 as an identifiable marker in rhizobia: survival and genetic stability of Tn5 mutant bean rhizobia under temperature stressed conditions in desert soils. Microb. Ecol. 21:21–33.CrossRefGoogle Scholar
  76. 76.
    Postma, J., C. H. Hok-A-Hin, and J. H. Oude Voshaar. 1990. Influence of the inoculum density on the growth and survival of Rhizobium leguminosarum biovar trifolii introduced into sterile and non-sterile loamy sand and silt loam. FEMS Microbiol. Ecol. 73:49–58.CrossRefGoogle Scholar
  77. 77.
    Postma, J., J. D. van Elsas, J. M. Govaert, and J. A. van Veen. 1988. The dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil as determined by immunofluorescence and selective techniques. FEMS Microbiol. Ecol. 53:251–260.Google Scholar
  78. 78.
    Press, C. M., J. W. Kloepper, J. A. McInroy. 1992. Pleiotropic mutations associated with spontaneous antibiotic-resistant mutants of rhizobacteria. Phytopathology 82:1178 (abstract).Google Scholar
  79. 79.
    Quinn, J. P. 1984. The modification and evaluation of some cytochemical techniques for the enumeration of metabolically active heterotrophic bacteria in the marine environment. J. Appl. Bacteriol. 57:51–57.PubMedCrossRefGoogle Scholar
  80. 80.
    Rattray, E. A., J. I. Prosser, L. A. Glover, and K. Killham. 1992. Matric potential in relation to survival and activity of a genetically modified microbial inoculum in soil. Soil Biol. Biochem. 24: 421–425.CrossRefGoogle Scholar
  81. 81.
    Richaume, A., C. Steinberg, and L. Jocteur-Monrozier. 1993. Differences between direct and indirect enumeration of soil bacteria: the influence of soil structure and cell location. Soil Biol. Biochem. 25:641–643.CrossRefGoogle Scholar
  82. 82.
    Rodriguez, G. G., D. Phipps, K. Ishiguro, and H. F. Ridgway. 1992. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58:1801–1808.PubMedGoogle Scholar
  83. 83.
    Roos, I. M. M., and M. J. Hattingh. 1986. Resident populations of Pseudomonas syringae on stone fruit tree leaves in South Africa. Phytophylactica 18:55–58.Google Scholar
  84. 84.
    Roslev, P., and G. M. King. 1993. Application of a tetrazolium salt with a water-soluble formazan as an indicator of viability in respiring bacteria. Appl. Environ. Microbiol. 59:2891–2896.Google Scholar
  85. 85.
    Roszak, D. B., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365–379.Google Scholar
  86. 86.
    Roszak, D. B., D. J. Grimes, and R. R. Colwell. 1984. Viable but nonrecoverable stage of Salmonella enteriditis in aquatic systems. Can. J. Microbiol. 30:334–338.PubMedCrossRefGoogle Scholar
  87. 87.
    Rudolph, K., M. A. Roy, M. Sasser, D. E. Stead, M. Davis, and E. Gossele. 1990. Isolation of bacteria, p. 43–94. In Z. Klement, K. Rudolph, and D. C. Sands (ed.), Methods in Phytobacteriology. Akedimiai Kado, Budapest, Hungary.Google Scholar
  88. 88.
    Schuster, M. L., and D. P. Coyne. 1974. Survival mechanisms of phytopathogenic bacteria. Annu. Rev. Phytopathol. 12:199–221.CrossRefGoogle Scholar
  89. 89.
    Seong, K.-V., M. Hofte, J. Boelens, and W. Verstaete. 1991. Growth, survival, and root colonization of plant growth beneficial Pseudomonas fluorescens ANP15 and Pseudomonas aeruginosa 7NSK2 at different temperatures. Soil Biol. Biochem. 23:423–428.CrossRefGoogle Scholar
  90. 90.
    Servais, P., J. Vives-Rigo, and G. Billen. 1992. Survival and mortality of bacteria in natural environments, p. 100–119. In J. C. Fry and M. J. Day (ed.), Release of Genetically Engineered and Other Micro-Organisms. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  91. 91.
    Singh, A., and G. A. McFeters. 1990. Injury of enteropathogenic bacteria in drinking water, p. 368–379. In G. A. McFeters (ed.), Drinking Water Microbiology: Progress and Recent Developments. Springer-Verlag, New York, N.Y.CrossRefGoogle Scholar
  92. 92.
    Singh, A., and G. A. McFeters. 1990. Enumeration, occurrence, and significance of injured indicator bacteria in drinking water, p. 368–379. In G. A. McFeters (ed.), Drinking Water Microbiology: Progress and Recent Developments. Springer-Verlag, New York, N.Y.CrossRefGoogle Scholar
  93. 93.
    Singh, A., F.-P. Yu, and G. A. McFeters. 1990. Rapid detection of chlorine-induced bacterial injury by the direct viable count method using image analysis. Appl. Environ. Microbiol. 56:389–394.PubMedGoogle Scholar
  94. 94.
    Sleesman, J. P., and C. Leben. 1976. Bacterial desiccation: effects of temperature, relative humidity, and culture age on survival. Phytopathology 66:1334–1338.CrossRefGoogle Scholar
  95. 95.
    Surico, G., B. W. Kennedy, and G. L. Ercolani. 1981. Multiplication of Pseudomonas syringae pv. glycinea on soybean primary leaves exposed to aerosolized inoculum. Phytopathology 71:532–536.CrossRefGoogle Scholar
  96. 96.
    Timmer, L. W., J. J. Marois, and D. Achor. 1987. Growth and survival of xanthomonads under conditions nonconducive to disease development. Phytopathology 77:1341–1345.CrossRefGoogle Scholar
  97. 97.
    Troxler, J., M. Zala, C. Keel, A. Natsch, and G. Defago. 1994. Application of biocontrol strain Pseudomonas fluorescens CHAO to standard soil-columns and field-scale lysimeters. II. Detection and enumeration, p. 258–260. In M. H. Ryder, P. M. Stephens, and G. D. Bowen (ed.), Improving Plant Productivity with Rhizobacteria. CSIRO Division of Soils, Adelaide, Australia.Google Scholar
  98. 98.
    Troxler, J., M. Zala, Y. Moenne-Loccoz, and G. Defago. 1997. Predominance of nonculturable cells of the biocontrol strain Pseudomonas fluorescens CHAO in the surface horizon of large outdoor lysimeters. Appl. Environ. Microbiol. 63:3776–3782.PubMedGoogle Scholar
  99. 99.
    Troxler, J., M. Zala, A. Natsch, Y. Moenne-Loccoz, and G. Defago. 1997. Autecology of the biocontrol strain Pseudomonas fluorescens CHAO in the rhizosphere and inside roots at later stages of development. FEMS Microbiol. Ecol. 24:119–130.CrossRefGoogle Scholar
  100. 100.
    Vandenhove, H., R. Merckx, H. Wilmots, and K. Vlassak. 1991. Survival of Pseudomonas fluorescens inocula of different physiological stages in soil. Soil Biol. Biochem. 23:1133–1142.CrossRefGoogle Scholar
  101. 101.
    van Overbeek, L. S., L. Eberl, M. Givskov, S. Molin, and J. D. van Elsas. 1995. Survival of, and induced stress resistance in, carbon-starved Pseudomonas fluorescens cells residing in soil. Appl. Environ. Microbiol. 61:4202–4208.PubMedGoogle Scholar
  102. 102.
    van Rensburg, H. J., and B. W. Strijdom. 1980. Survival of fast-and slow-growing Rhizobium spp. under conditions of relatively mild desiccation. Soil Biol. Biochem. 12:353–356.CrossRefGoogle Scholar
  103. 103.
    van Veen, J. A., and C. E. Heijnen. 1994. The fate and activity of microorganisms introduced into soil, p. 63–71. In C. E. Pankhurst, B. M. Doube, V. V. S. R. Gupta, and P. R. Grace (ed.), Soil Biota: Management in Sustainable Farming Systems. CSIRO, Glen Osmond, Australia.Google Scholar
  104. 104.
    van Veen, J. A., L. S. van Overbeek, and J. D. van Elsas. 1997. Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev. 61:121–135.PubMedGoogle Scholar
  105. 105.
    Walter, M. V., L. A. Porteous, V. J. Prince, L. Ganio, and R. J. Seidler. 1991. A microcosm for measuring survival and conjugation of genetically engineered bacteria in rhizosphere environments. Curr. Microbiol. 22:117–121.CrossRefGoogle Scholar
  106. 106.
    Williams, S. T. 1985. Oligotrophy in soil: fact or fiction? p. 81–110. In M. Fletcher and G. D. Floodgate (ed.). Bacteria in their Natural Environments. Academic Press, London, United Kingdom.Google Scholar
  107. 107.
    Wilson, M., and S. E. Lindow. 1992. Relationship of total viable and culturable cells in epiphytic populations of Pseudomonas syringae. Appl. Environ. Microbiol. 58:3908–3913.PubMedGoogle Scholar
  108. 108.
    Wilson, M., and S. E. Lindow. 1993. Effect of phenotypic plasticity on epiphytic survival and colonization by Pseudomonas syringae. Appl. Environ. Microbiol. 59:410–416.PubMedGoogle Scholar
  109. 109.
    Wilson, M., and S. E. Lindow. 1993. Release of recombinant microorganisms. Annu Rev. Microbiol. 47:913–944.PubMedCrossRefGoogle Scholar
  110. 110.
    Wilson, M., and S. E. Lindow. 1994. Coexistence among epiphytic bacterial populations resulting from nutritional resource partitioning. Appl. Environ. Microbiol. 60:4468–4477.PubMedGoogle Scholar
  111. 111.
    Wimalajeewa, D. L. S., and J. D. Flett. 1985. A study of populations of Pseudomonas syringae pv. syringae on stonefruits in Victoria. Plant Pathology 34:248–254.CrossRefGoogle Scholar
  112. 112.
    Xu, H.-S., N. Roberts, F. L. Singelton, R. W. Atwell, D. J. Grimes, and R. R. Colwell. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8:313–323.CrossRefGoogle Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Mark Wilson
    • 1
  • Steven E. Lindow
    • 2
  1. 1.Biology DepartmentThe Colorado CollegeColorado SpringsUSA
  2. 2.Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations