The Importance of Viable but Nonculturable Bacteria in Biogeochemistry

  • D. Jay Grimes
  • Aaron L. Mills
  • Kenneth H. Nealson


Biogeochemical cycles are critical parts of life itself—if elements do not cycle, life will grind to a halt, with essential elements being buried. Recycling of the elements allows for their reappearance in the food web to be used again and again, thereby allowing life to replenish itself. A simple example of this is shown in Fig. 1 for the carbon cycle, in which energy flow on Earth is diagrammatically linked to the carbon cycle. In this diagram we see the two major sources of energy on the planet (photic energy and geothermal energy) linked to life directly (through photosynthesis) and indirectly (through conversion of geothermal energy to reduced substrates that are used for lithotrophic metabolism). Both processes lead to the “fixation” or reduction of CO2 to organic carbon—e.g., the conversion of carbon dioxide into biomass. The organic carbon is then recycled to the atmosphere via respiration by carbon-oxidizing bacteria and eukaryotes.


Acid Mine Drainage Much Probable Number Geothermal Energy Light Organ Redox Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, K. H., and A. L. Mills. 1982. Determination of the number of respiring Thiobacillus ferrooxidans cells in water samples by using combined fluorescent antibody-2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride staining. Appl. Environ. Microbiol. 43:338–344.PubMedGoogle Scholar
  2. 2.
    Boone, D. R., Y. Liu, Z. Zhao, D. L. Balkwill, G. R. Drake, T. O. Stevens, and H. C. Aldrich. 1995. Bacillus infernus sp. nov., an Fe(III)-and Mn(IV)-reducing anaerobe from a deep terrestrial subsurface. Int. J. Syst. Bacteriol. 45:441–448.PubMedCrossRefGoogle Scholar
  3. 3.
    Bowman, J. P., L. Jiménez, I. Rosario, T. C. Hazen, and G. S. Sayler. 1993. Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site. Appl. Environ. Microbiol. 59:2380–2387.PubMedGoogle Scholar
  4. 4.
    Buckley, D. H., J. R. Graber, and T. M. Schmidt. 1998. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl. Environ. Microbiol. 64:4333–4339.PubMedGoogle Scholar
  5. 5.
    Bull, A. T., M. Goodfellow, and J. H. Slater. 1992. Biodiversity as a source of innovation in biotechnology. Annu. Rev. Microbiol. 46:219–252.PubMedCrossRefGoogle Scholar
  6. 6.
    Button, D. K., F. Schut, P. Quang, R. Martin, and B. R. Robertson. 1993. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl. Environ. Microbiol. 59:881–891.PubMedGoogle Scholar
  7. 7.
    Caccavo, F., Jr., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, and M. J. McInerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60:3752–3759.PubMedGoogle Scholar
  8. 8.
    Cary, C., C. R. Fisher, and H. Felbeck. 1988. Mussel growth supported by methane as sole carbon and energy source. Science 240:78–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jannasch, and J. B. Waterbury. 1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342.PubMedCrossRefGoogle Scholar
  10. 10.
    Chesbro, W. R., M. Arbige, and R. Eifert. 1990. When nutrient limitation places bacteria in the domains of slow growth: metabolic, morphologic and cell cycle behavior. FEMS Microbiol. Ecol. 74:103–120.CrossRefGoogle Scholar
  11. 11.
    DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:5685–5689.PubMedCrossRefGoogle Scholar
  12. 12.
    DeLong, E. F., K. Y. Wu, B. B. Prézelin, and R. V. M. Jovine. 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature (London) 371:695–697.CrossRefGoogle Scholar
  13. 13.
    Distel, D. L., and C. M. Cavanaugh. 1994. Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J. Bacteriol. 176:1932–1938.PubMedGoogle Scholar
  14. 14.
    Eisen, J. A., S. W. Smith, and C. M. Cavanaugh. 1992. Phylogenetic relationships of chemoautotrophic bacterial symbionts of Solemya velum Say (Mollusca:Bivalvia) determined by 16S rRNA gene sequence analysis. J. Bacteriol. 174:3416–3421.PubMedGoogle Scholar
  15. 14a.
    Field, K. G., D. Gordon, T. Wright, M. Rappé, E. Urback, K. Vergin, and S. J. Giovannoni. 1997. Diversity and depth-specific distribution of SARI 1 cluster rRNA genes from marine planktonic bacteria. Appl. Environ. Microbiol. 63:63–70.PubMedGoogle Scholar
  16. 15.
    Folsom, B. R., P. J. Chapman, and P. H. Pritchard. 1990. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl. Environ. Microbiol. 56:1279–1285.PubMedGoogle Scholar
  17. 16.
    Fredrickson, J. K., D. L. Balkwill, G. R. Drake, M. F. Romine, D. B. Ringelberg, and D. C. White. 1995. Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl. Environ. Microbiol. 61:1917–1922.PubMedGoogle Scholar
  18. 17.
    Fuhrman, J. A., K. McCallum, and A. A. Davis. 1992. Novel major archaebacterial group from marine plankton. Nature (London) 356:148–149.CrossRefGoogle Scholar
  19. 17a.
    Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63.PubMedCrossRefGoogle Scholar
  20. 18.
    Gottschal, J. C. 1990. Phenotypic response to environmental changes. FEMS Microbiol. Ecol. 74: 93–102.CrossRefGoogle Scholar
  21. 19.
    Grimes, D. J., F. L. Singleton, and R. R. Colwell. 1984. Allogenic succession of marine bacterial communities in response to pharmaceutical waste. J. Appl. Bacteriol. 57:247–261.PubMedCrossRefGoogle Scholar
  22. 20.
    Grimes, D. J., R. W. Attwell, P. R. Brayton, L. M. Palmer, D. M. Rollins, D. B. Roszak, F. L. Singleton, M. L. Tamplin, and R. R. Colwell. 1986. Fate of enteric pathogenic bacteria in estuarine and marine environments. Microbiol. Sci. 3:324–329.PubMedGoogle Scholar
  23. 21.
    Hansen, T. A. 1993. Carbon metabolism of sulfate-reducing bacteria, p. 21–40. In J. M. Odom and R. Singleton, Jr. (ed.), The Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer-Verlag, New York, N.Y.CrossRefGoogle Scholar
  24. 22.
    Haygood, M. G. 1993. Light organ symbioses in fishes. Crit. Rev. Microbiol. 19:191–216.PubMedCrossRefGoogle Scholar
  25. 23.
    Haygood, M. G., B. M. Tebo, and K. H. Nealson. 1984. Luminous bacteria of a monocentrid fish (Monocentris japonicus) and two analopid fishes (Photoblepharon palpabratus and Kryptophanaron alfredi): population sizes and growth within the light organs and rates of release into the seawater. Mar. Biol. 78:249–258.CrossRefGoogle Scholar
  26. 24.
    Henry, S. M., and D. Grbić-Galić. 1991. Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer. Appl. Environ. Microbiol. 57:236–244.PubMedGoogle Scholar
  27. 25.
    Herman, D. C., and J. W. Costerton. 1993. Starvation-survival of a p-nitrophenol-degrading bacterium. Appl. Environ. Microbiol. 59:340–343.PubMedGoogle Scholar
  28. 26.
    Holt, J. G. (ed.). 1989. Bergey’s Manual of Systematic Bacteriology, vol. 1-4. Williams & Wilkins, Baltimore, Md.Google Scholar
  29. 27.
    Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180:4765–4774.PubMedGoogle Scholar
  30. 28.
    Jannasch, H. W. 1985. The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents. Proc. R. Soc. London Ser. B. 225:277–297.CrossRefGoogle Scholar
  31. 29.
    Jørgensen, B. B. 1980. Mineralization and the bacterial cycling of carbon, nitrogen, and sulphur in marine sediments, p. 239–251. In D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater (ed.), Contemporary Microbial Ecology. Academic Press, Inc., (London) Ltd., London, United Kingdom.Google Scholar
  32. 30.
    Kessel, M. 1977. The ultrastructure of the relationship between the luminous organ of the teleost fish Photoblepharon palpebratus and its symbiotic bacteria. Cytobiology 15:145–155.Google Scholar
  33. 31.
    Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415–420.PubMedCrossRefGoogle Scholar
  34. 31a.
    Kuznetsov, S. I., G. A. Dubinina, and N. A. Lapteva. 1979. Biology of oligotrophic bacteria. Annu. Rev. Microbiol. 33:377–387.PubMedCrossRefGoogle Scholar
  35. 32.
    Lee, K-H, and E. G. Ruby. 1995. Symbiotic role of the viable but nonculturable state of Vibrio fischeri in Hawaiian coastal seawater. Appl. Environ. Microbiol. 61:278–283.PubMedGoogle Scholar
  36. 33.
    Martin, J. H., et al. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature (London) 371:123–129.CrossRefGoogle Scholar
  37. 34.
    Matin, A. 1991. The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol. Microbiol. 5:3–10.PubMedCrossRefGoogle Scholar
  38. 35.
    Meyer-Reil, L. A. 1978. Autoradiography and epifluorescent microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters. Appl. Environ. Microbiol. 36:506–512.PubMedGoogle Scholar
  39. 36.
    Mills, A. L. 1985. Acid mine waste drainage: Microbial impact on the recovery of soil and water ecosystems, p. 35–81. In R. L. Tate and D. Klein (ed.), Soil Reclamation Processes. Marcel Dekker, Inc., New York, N.Y.Google Scholar
  40. 37.
    Nealson, K. H., and J. W. Hastings. 1992. The luminous bacteria, p. 625–649. In A. Balows, H. G. Trueper, M. Dowrkin, W. Harder, and K. Schleifer (ed.), The Prokaryotes. Springer-Verlag, New York, N.Y.Google Scholar
  41. 38.
    Nealson, K. H., and D. A. Stahl. 1997. Microorganisms and biogeochemical cycles: what can we learn from layered microbial communities? Rev. Mineral. 35:5–34.Google Scholar
  42. 39.
    Nusslein, K., and J. M. Tiedje. 1999. Soil bacterial community shift correlated with change from pasture vegetation in a tropical soil. Appl. Environ. Microbiol. 65:3622–3626.PubMedGoogle Scholar
  43. 40.
    Nystrom, T., N. H. Albertson, K. Flardh, and S. Kjelleberg. 1990. Physiological and molecular adaptation to starvation and recovery from starvation by the marine Vibrio sp. S14. FEMS Microbiol. Ecol. 74:129–140.CrossRefGoogle Scholar
  44. 41.
    Odom, J. M., and R. Singleton, Jr. (ed.). 1993. The Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer-Verlag, New York, N.Y.Google Scholar
  45. 42.
    Olsen, G. J. 1994. Archaea, archaea, everywhere. Nature (London) 371:657–658.CrossRefGoogle Scholar
  46. 43.
    Parkes, R. J., B. A. Cragg, S. J. Bale, J. M. Getliff, K. Goodman, P. A. Rochelle, J. C. Fry, A. J. Weightman, and S. M. Harvey. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature (London) 371:410–413.CrossRefGoogle Scholar
  47. 44.
    Postgate, J. R. 1979. The Sulphate-Reducing Bacteria. Cambridge University Press, Cambridge, U.K.Google Scholar
  48. 45.
    Ravenschlag, K., K. Scham, J. Pernthaler, and R. Amann. 1999. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol. 65:3982–3989.PubMedGoogle Scholar
  49. 46.
    Roszak, D. B., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365–379.PubMedGoogle Scholar
  50. 47.
    Roszak, D. B., D. J. Grimes, and R. R. Colwell. 1984. Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can. J. Microbiol. 30:334–338.PubMedCrossRefGoogle Scholar
  51. 48.
    Sekiguchi, Y., Y. Kamagata, K. Nakamura, A. Ohashi, and H. Harada. 1999. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol. 65:1280–1288.PubMedGoogle Scholar
  52. 49.
    Silverman, M. P., and D. G. Lundgren. 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacterial. 77:642–647.CrossRefGoogle Scholar
  53. 50.
    Tabor, P. S., and R. A. Neihof. 1984. Direct determination of activities for microorganisms of Chesapeake Bay populations. Appl. Environ. Microbiol. 48:1012–1019.PubMedGoogle Scholar
  54. 51.
    Tebo, B. M., D. S. Linthicum, and K. H. Nealson. 1979. Luminous bacteria and light-emitting fish: ultrastructure of the symbiosis. Biosystems 11:269–281.PubMedCrossRefGoogle Scholar
  55. 52.
    Tiedje, J. M. 1994. Microbial diversity: of value to whom? ASM News 60:524–525.Google Scholar
  56. 53.
    Truex, M. J., F. J. Brockman, D. L. Johnstone, and J. K. Fredrickson. 1992. Effect of starvation on induction of quinoline degradation for a subsurface bacterium in a continuous-flow column. Appl. Environ. Microbiol. 58:2386–2392.PubMedGoogle Scholar
  57. 54.
    Vidal, F. V. 1981. Microorganisms associated with areas of hydrothermal activity off Northern Baja California. Ph.D. Thesis. University of California, San Diego.Google Scholar
  58. 55.
    Vidal, V. M. V., F. V. Vidal, and J. Isaacs. 1978. Coastal submarine hydrothermal activity off Northern Baja California. J. Geophys. Res. 84:1757–1774.CrossRefGoogle Scholar
  59. 56.
    Wackett, L. P., and D. T. Gibson. 1988. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54:1703–1708.PubMedGoogle Scholar
  60. 57.
    Wassel, R. A., and A. L. Mills. 1983. Changes in water and sediment bacterial community structure in a lake receiving acid mine drainage. Microb. Ecol. 9:155–169.CrossRefGoogle Scholar
  61. 58.
    Weichart, D., J. D. Oliver, and S. Kjelleberg. 1992. Low temperature induced non-culturability and killing of Vibrio vulnificus. FEMS Microbiol. Lett. 100:205–210.Google Scholar
  62. 59.
    White, D. C. 1993. In situ measurement of microbial biomass, community structure and nutritional status. Phil Trans. R. Soc. London Ser. A 344:59–67.CrossRefGoogle Scholar
  63. 60.
    White, D. C. 1995. Chemical ecology: possible linkage between macro-and microbial ecology. Oikos 74:174–181.CrossRefGoogle Scholar
  64. 61.
    Widdel, F. 1987. New types of acetate oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148:286–291.CrossRefGoogle Scholar
  65. 62.
    Widdel, F., and N. Pfennig. 1977. A new anaerobic, sporing, acetate-oxidizing, sulfate reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch. Microbiol. 112:119–122.PubMedCrossRefGoogle Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • D. Jay Grimes
    • 1
  • Aaron L. Mills
    • 2
  • Kenneth H. Nealson
    • 3
  1. 1.Institute of Marine SciencesUniversity of Southern MississippiOcean SpringsUSA
  2. 2.Laboratory of Microbial Ecology, Department of Environmental Sciences, Clark HallUniversity of VirginiaCharlottesvilleUSA
  3. 3.Division of Geology and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations