Bacterial Viruses and Hosts: Influence of Culturable State

  • Frank T. Robb
  • Russell T. Hill


Many fundamental advances in molecular biology have resulted from the study of interactions between bacteriophages and their bacterial hosts. These advances include confirmation that DNA is the carrier of genetic information (16), the discovery of messenger RNA as the intermediate between DNA and protein (15), and the discovery of restriction endonucleases (2), a prerequisite for the growth of genetic engineering and biotechnology.


Bacterial Virus Burst Size Phage Infection Viral Abundance Phage Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, M. H. 1959. Bacteriophages. Interscience, New York, N.Y.Google Scholar
  2. 2.
    Arber, W. 1965. Host-controlled modification of bacteriophage. Annu. Rev. Microbiol. 19:365–378.PubMedCrossRefGoogle Scholar
  3. 3.
    Bergh, O., K. Y. Borsheim, G. Bratbak, and M. Heldal. 1989. High abundance of viruses found in aquatic environments. Nature (London) 340:467–468.CrossRefGoogle Scholar
  4. 4.
    Børsheim, K. Y., G. Bratbak, and M. Heldal. 1990. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl. Environ. Microbiol. 56: 352–356.PubMedGoogle Scholar
  5. 5.
    Bratbak, G., O. H. Haslund, M. Heldal, A. Noess, and T. Roeggen. 1992. Giant marine viruses? Man Ecol. Prog. Ser. 85:201–202.CrossRefGoogle Scholar
  6. 6.
    Cochlan, W. P., J. Wikner, G. F. Steward, D. C. Smith, and F. Azam. 1993. Spatial distribution of viruses, bacteria and chlorophyll a in neritic, oceanic and estuarine environments. Mar. Ecol. Prog. Ser. 92:77–87.CrossRefGoogle Scholar
  7. 7.
    Coetzee, J. N. 1987. Bacteriophage taxonomy, p. 45–85. In S.M. Goyal, C. P. Gerba, and G. Bitton (ed.), Phage Ecology. John Wiley and Sons, New York, N.Y.Google Scholar
  8. 8.
    Daniels, D. L., J. L. Schroeder, W. Szybalski, F. Sanger, A. R. Coulson, G. R. Hong, D. F. Hill, G. B. Petersen, and F. R. Blattner. 1983. Appendix II: Complete annotated lambda sequence, p. 519–676. In R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  9. 9.
    Doermann, A. H. 1948. Lysis and lysis inhibition with Escherichia coli bacteriophages. J. Bacteriol. 55:257–275.Google Scholar
  10. 10.
    Dunn, J. J., and F. W. Studier. 1983. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166:477–535.PubMedCrossRefGoogle Scholar
  11. 11.
    Farrah, S. R. 1987. Ecology of phage in freshwater environments, p. 125–136. In S. M. Goyal, C. P. Gerba, and G. Bitton (ed.), Phage Ecology. John Wiley and Sons, New York, N.Y.Google Scholar
  12. 12.
    Ferguson, R. L., E. N. Buckley, and A.V. Palumbo. 1984. Response of marine bacterioplankton to differential filtration and confinement. Appl. Environ. Microbiol. 47:49–55.PubMedGoogle Scholar
  13. 12a.
    Fuhrman, J. A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399: 541–548.PubMedCrossRefGoogle Scholar
  14. 13.
    Fuhrman, J. A., and C. A. Suttle. 1993. Viruses in marine planktonic systems. Oceanography 6: 51–63.Google Scholar
  15. 14.
    Goyal, S. M. 1987. Methods in phage ecology, p. 267–287. In S. M. Goyal, C. P. Gerba, and G. Bitton (ed.), Phage Ecology, John Wiley and Sons, New York, N.Y.Google Scholar
  16. 15.
    Hall, B. D., and S. Spiegelman. 1961. Sequence complementarity of T2 DNA and T2-specific RNA. Proc. Natl. Acad. Sci. USA 47:137–146.PubMedCrossRefGoogle Scholar
  17. 16.
    Hershey, A. D., and M. Chase. 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36:39–56.PubMedCrossRefGoogle Scholar
  18. 17.
    Hobbie, J. E., R. J. Daley, and S. Jasper. 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33:1225–1228.PubMedGoogle Scholar
  19. 18.
    Hoppe, H. G. 1976. Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of microautoradiography. Mar. Biol. 36:291–302.CrossRefGoogle Scholar
  20. 19.
    Jannasch, H. W., and G. E. Jones. 1959. Bacterial populations in seawater as determined by different methods of enumeration. Limnol. Oceanogr. 4:128–139.CrossRefGoogle Scholar
  21. 20.
    Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415–420.PubMedCrossRefGoogle Scholar
  22. 21.
    Kokjohn, T. A., G. S. Sayler, and R. V. Miller. 1991. Attachment and replication of Pseudomonas aeruginosa bacteriophages under conditions simulating aquatic environments. J. Gen. Microbiol. 137:661–666.Google Scholar
  23. 22.
    Lanning, S., and S. T. Williams. 1982. Methods for the direct isolation and enumeration of actinophages in soil. J. Gen. Microbiol. 128:2063–2071.Google Scholar
  24. 23.
    Linn, T., R. Losick, and A. L. Sonenshein. 1975. Rifampicin resistance mutation of Bacillus subtilis altering the electrophoretic mobility of the beta subunit of ribonucleic acid polymerase. J. Bacteriol. 122:1387–1390.PubMedGoogle Scholar
  25. 24.
    Matin, A., E. A. Auger, P. H. Blum, and J. E. Schultz. 1989. Genetic basis of starvation survival in nondifferentiating bacteria. Ann. Rev. Microbiol. 43:293–316.CrossRefGoogle Scholar
  26. 25.
    Moebus, K. 1980. A method for the detection of bacteriophages from ocean waters. Helgolander Meeresunters. 34:1–14.CrossRefGoogle Scholar
  27. 26.
    Moebus, K. 1987. Ecology of marine bacteriophages, p. 137–156. In S. M. Goyal, C. P. Gerba, and G. Bitton (ed.), Phage Ecology. John Wiley and Sons, New York, N.Y.Google Scholar
  28. 27.
    Oliver, J. D., L. Nilsson, and S. Kjelleberg. 1991. Formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl. Environ. Microbiol. 57:2640–2644.PubMedGoogle Scholar
  29. 28.
    Paul, J. H., J. B. Rose, S. C. Jiang, C. A. Kellogg, and L. Dickson. 1993. Distribution of viral abundance in the reef environment of Key Largo, Florida. Appl. Environ. Microbiol. 59:718–724.PubMedGoogle Scholar
  30. 29.
    Paul, J. H., S. C. Jiang, and J. B. Rose. 1991. Concentration of viruses and dissolved DNA from aquatic environments by Vortex Flow Filtration. Appl. Environ. Microbiol. 57:2197–2204.PubMedGoogle Scholar
  31. 30.
    Proctor, L. M., and J. A. Fuhrman. 1990. Viral mortality of marine bacteria and cyanobacteria. Nature (London) 343:60–62.CrossRefGoogle Scholar
  32. 31.
    Ptashne, M. A. 1986. Genetic Switch. Gene Control and Phage λ Blackwell Scientific Publications, Palo Alto, Calif.Google Scholar
  33. 32.
    Ravel, J., R. T. Hill, and R. R. Colwell. 1994. Isolation of a Vibrio cholerae transposon-mutant with an altered viable but nonculturable response. FEMS Microbiol. Lett. 120:57–62.PubMedCrossRefGoogle Scholar
  34. 33.
    Robb, S. M., D. R. Woods, and F. T. Robb. 1978. Phage growth characteristics on stationary phase Achromobacter cells. J. Gen. Virol. 41:265–272.PubMedCrossRefGoogle Scholar
  35. 34.
    Robb, S. M., D. R. Woods, F. T. Robb, and J. K. Struthers. 1977. Rifampicin-resistant mutant supporting bacteriophage growth on stationary phase Achromobacter cells. J. Gen. Virol. 35:117–123.PubMedCrossRefGoogle Scholar
  36. 35.
    Rollins, D. M., and R. R. Colwell. 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52:531–538.PubMedGoogle Scholar
  37. 36.
    Roszak, D. B., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365–379.PubMedGoogle Scholar
  38. 37.
    Seeley, N. D., and S. B. Primrose. 1982. The isolation of bacteriophages from the environment. J. Appl. Bacteriol. 53:1–17.PubMedCrossRefGoogle Scholar
  39. 38.
    Siegele, D. A., and R. Kolter. 1992. Life after log. J. Bacteriol. 174:345–348.PubMedGoogle Scholar
  40. 39.
    Suttle, C. A. 1993. Enumeration and isolation of viruses, p. 121–134. In P. F. Kemp, B. F Sherr, E. B. Sherr, and J. J. Cole (ed.), Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, Fla.Google Scholar
  41. 40.
    Suttle, C. A., A. M. Chan, and M. T. Cottrell. 1990. Infection of phytoplankton by viruses and reduction of primary productivity. Nature (London) 347:467–469.CrossRefGoogle Scholar
  42. 41.
    Suttle, C. A., A. M. Chan, and M. T. Cottrell. 1991. Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton. Appl. Environ. Microbiol. 57:721–726.PubMedGoogle Scholar
  43. 42.
    Tanaka, K., Y. Takayanagi, N. Fujita, A. Ishihama, and H. Takahashi. 1993. Heterogeneity of the principal s factor in Escherichia coli: the rpoS gene product, s38, is a second principal s factor of RNA polymerase in stationary-phase Escherichia coll Proc. Natl. Acad. Sci. USA 90:3511–3515.CrossRefGoogle Scholar
  44. 43.
    Thingstad, T. F., M. Heldal, G. Bratbak, and I. Dundas. 1993. Are viruses important partners in pelagic food webs? Trends Ecol. Evol. 8:209–213.PubMedCrossRefGoogle Scholar
  45. 44.
    Thompson, J. A., and D. R. Woods. 1974. Bacteriophages and cryptic lysogeny in Achromobacter. J. Gen. Microbiol. 22:153–157.Google Scholar
  46. 45.
    Thompson, J. A., D. R. Woods, and R. L. Welton. 1972. Collagenolytic activity of aerobic halophiles from hides. J. Gen. Microbiol. 70:315–319.Google Scholar
  47. 46.
    Torrella, F., and R. Y. Morita. 1979. Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: ecological and taxonomical implications. Appl. Environ. Microbiol. 37:774–778.PubMedGoogle Scholar
  48. 47.
    Weinbauer, M. G., D. Fuks, and P. Peduzzi. 1993. Distribution of viruses and dissolved DNA along a coastal trophic gradient in the northern Adriatic sea. Appl. Environ. Microbiol. 59:4074–4082.PubMedGoogle Scholar
  49. 48.
    Williams, S. T., A. M. Mortimer, and L. Manchester. 1987. Ecology of soil bacteriophages, p. 157–179. In S. M. Goyal, C. P. Gerba, and G. Bitton (ed.), Phage Ecology. John Wiley and Sons, New York, N.Y.Google Scholar
  50. 48a.
    Wommack, K. E., and R. R. Colwell. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev 64:69–114.PubMedCrossRefGoogle Scholar
  51. 49.
    Wommack, K. E., R. T. Hill, and R. R. Colwell. 1995. A simple method for the concentration of viruses from natural water samples. J. Microbiol. Meth. 22:57–67.CrossRefGoogle Scholar
  52. 50.
    Wommack, K. E., R. T. Hill, M. Kessel, E. Russek-Cohen, and R. R. Colwell. 1992. Distribution of viruses in the Chesapeake Bay. Appl. Environ. Microbiol. 58:2965–2970.PubMedGoogle Scholar
  53. 51.
    Woods, D. R. 1976. Bacteriophage growth on stationary phase Achromobacter cells. J. Gen. Virol. 32:45–50.PubMedCrossRefGoogle Scholar
  54. 52.
    Xu, H. S., N. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes, and R. R. Colwell. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8:313–323.CrossRefGoogle Scholar
  55. 53.
    Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp 18 and pUC19 vectors. Gene 33:103–119.PubMedCrossRefGoogle Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Frank T. Robb
    • 1
  • Russell T. Hill
    • 1
  1. 1.Center of Marine Biotechnology, Columbus CenterUniversity of Maryland Biotechnology InstituteBaltimoreUSA

Personalised recommendations