Survival, Dormancy, and Nonculturable Cells in Extreme Deep-Sea Environments

  • Jody W. Deming
  • John A. Baross


An important conclusion from the initial application of 16S rRNA sequence analysis to problems in microbial ecology (263) is that most microorganisms (and frequently the dominant ones in an environment) do not exist in culture collections (6, 59, 124, 158). The basis for the incongruence between cultivated and naturally occurring strains has been attributed to microbial competition during the culturing process, to cell dormancy in nature due to starvation and other stresses, and (or) to insufficient understanding of the combined physical, chemical, and nutritional conditions required by the dominant strains, especially by symbionts and members of consortia. The ability to culture only a minor fraction of the microorganisms occurring in nature is particularly perplexing in specialized environments where limited diversity is anticipated and intensive culturing efforts have been pursued for decades, as in the famous hot springs of Yellowstone National Park (15, 336). On the other hand, the discovery that potentially key microbial players in pelagic marine environments do not yet exist in culture (70, 71, 75, 116, 118, 125, 237, 297) is less surprising. The oceans are spatially extensive, remote to sample, chemically and physically diverse on many scales, and frequently characterized by extreme conditions of temperature, pressure, or oligotrophy (300), promoting starvation and dormancy (230). Together these conditions make obtaining representative cultures, or even samples, of the major microbial players difficult and the results sometimes counterintuitive. For example, anaerobic microorganisms are now known to live in oxygenated sections of the water column. Biologically produced methane has been detected in such waters (208, 301), as have significant communities of uncultured (activity unknown) archaeal organisms, identified by rRNA sequence analysis as possibly related to known anaerobic genera (70, 116, 118, 237).


Hydrothermal Vent Extracellular Enzyme Activity Psychrophilic Bacterium Fuca Ridge Supraoptimal Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achenbach-Richter, L., R. Gupta, K. O. Stetter, and C. R. Woese. 1987. Were the original eubacteria thermophiles? Syst. Appl. Microbiol. 9:34.PubMedCrossRefGoogle Scholar
  2. 2.
    Albertson, N. H., T. Nystrom, and S. Kjelleberg. 1990. Exoprotease activity of two marine bacteria during starvation. Appl. Environ. Microbiol. 56:218–223.PubMedGoogle Scholar
  3. 3.
    Aller, R. C., and J. Y. Aller. 1986. Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic. Deep-Sea Res. 33:755–790.CrossRefGoogle Scholar
  4. 4.
    Alperin, M. J., and W. S. Reeburgh. 1984. Geochemical observations supporting anaerobic methane oxidation, p. 282–289. In R. L. Crawford and R. S. Hanson (ed.), Microbial Growth on C-I Compounds. American Society for Microbiology, Washington, D.C.Google Scholar
  5. 5.
    Alperin, M. J., W. S. Reeburgh, and M. J. Whiticar 1988. Carbon and hydrogen isotope frac-tionation resulting from anaerobic methane oxidation. Glob. Biogeochem. Cycles 2:279–288.CrossRefGoogle Scholar
  6. 6.
    Amann, R. I., W. Ludwig, and K.-H. Schleifer 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143–169.PubMedGoogle Scholar
  7. 7.
    Ammerman, J. W., and F. Azam. 1987. Characteristics of cyclic AMP transport by marine bacteria. Appl. Environ. Microbiol. 53:2963–2966.PubMedGoogle Scholar
  8. 8.
    Amy, P. S., and R. Y. Morita 1983. Starvation-survival of sixteen freshly isolated open ocean bacteria. Appl. Environ. Microbiol. 55:788–793.Google Scholar
  9. 9.
    Andrews, J. H.. 1991. Comparative Ecology of Microorganisms and Macroorganisms. Springer-Verlag, New York, N.YCrossRefGoogle Scholar
  10. 10.
    Antoine, E., C. Cilia, J. R. Meunier, J. Guezennec, F. Lesongeur, and G. Barbier 1997. Ther-mosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the Southwestern Pacific Ocean. Intl. J. Syst. Bacteriol. 47:1118–1123.CrossRefGoogle Scholar
  11. 11.
    Araki, T. 1991. The effect of temperature shifts on protein synthesis by the psychrophilic bacterium Vibrio sp. strain ANT-300. J. Gen. Microbiol. 137:817–826.PubMedGoogle Scholar
  12. 12.
    Arnosti, C. 1998. Rapid potential rates of extracellular enzymatic hydrolysis in Arctic sediments. Limnol. Oceanogr. 43:315–324.CrossRefGoogle Scholar
  13. 13.
    Azuma, Y., S. B. Newton, and L. D. Witter 1962. Production of psychrophilic mutants from mesophilic bacteria by ultraviolet irradiation. J. Dairy Sci. 45:1529–1530.CrossRefGoogle Scholar
  14. 14.
    Barcina, I., P. Lebaron, and J. Vives-Rego 1997. Survival of allochthonous bacteria in aquatic systems: a biological approach. FEMS Microbiol. Ecol. 23:1–9.CrossRefGoogle Scholar
  15. 15.
    Barns, S. ML, R. E. Fundyga, M. W. Jeffries, and N. R. Pace 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 1609–1613.PubMedCrossRefGoogle Scholar
  16. 16.
    Baross, J. A. 1998. Do the geological and geochemical records of the early earth support the prediction from global phylogenetic models of a thermophilic cenancestor? p. 3–18. In J. Weigel and M. Adams (ed.), Thermophiles: the Keys to Molecular Evolution and the Origin of Life. Taylor and Francis, London, UK.Google Scholar
  17. 17.
    Baross, J. A., and J. W. Deming 1983. Growth of “black smoker” bacteria at temperatures of at least 250°C. Nature 303:423–426.CrossRefGoogle Scholar
  18. 18.
    Baross, J. A., and J. W. Deming. 1985. The role of bacteria in the ecology of black smoker environments. In M. Jones (ed.), The Hydrothermal Vents of the Eastern Pacific, an Overview, Biol. Soc. of Washington Bull. 6:355-371.Google Scholar
  19. 19.
    Baross, J. A., and J. W. Deming. 1995. Bacterial growth at high temperatures: isolation and taxonomy, physiology and ecology, p. 169–217. In D. M. Karl (ed.), Microbiology of Deep-Sea Hydrothermal Vents. CRC Press, New York, N.YGoogle Scholar
  20. 20.
    Baross, J. A., and S. E. Hoffman. 1985. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins Life 15:327–345.CrossRefGoogle Scholar
  21. 21.
    Baross, J. A., and J. F. Holden 1996. Overview of hyperthermophiles and their heat-shock proteins. Adv. Protein Chem. 48:1–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Baross, J. A., and R. Y. Morita. 1978. Microbial life at low temperatures: ecological aspects, p. 9–71. In D. J. Kushner (ed.). Microbial Life in Extreme Environments. Academic Press, New York, N.YGoogle Scholar
  23. 23.
    Baross, J. A., J. W. Deming, and R. R. Becker 1984. Evidence for microbial growth in high pressure, high temperature environments, p. 186–195. In M. J. Klug and C. A. Reddy (ed.), Current Perspectives in Microbial Ecology: Third International Symposium on Microbial Ecology. American Society for Microbiology, Washington, D.C.Google Scholar
  24. 24.
    Baross, J. A., F. J. Hanus, and R. Y. Morita. 1974. Effects of hydrostatic pressure on uracil uptake, ribonucleic acid synthesis, and growth of three obligately psychrophilic marine vibrios, Vibrio alginolyticus, and Escherichia coli, p. 180–202. In R. R. Colwell and R. Y. Morita (ed.), Effect of the Ocean Environment on Microbial Activities. University Park Press, Baltimore, Md.Google Scholar
  25. 25.
    Baross, J. A., F. J. Hanus, and R. Y. Morita. 1975. Survival of human enteric and other sewage microorganisms under simulated deep-sea conditions. Appl. Microbiol. 30:309–318.PubMedGoogle Scholar
  26. 26.
    Baross, J. A., M. D. Lilley, and L. I. Gordon. 1982. Is the CH4, H2, and CO venting from submarine hydrothermal systems produced by thermophilic bacteria? Nature 298:366–368.CrossRefGoogle Scholar
  27. 27.
    Baross, J. A., P. A. Tester, and R. Y. Morita. 1978. Incidence, microscopy, and etiology of exoskeleton lesions in the tanner crab, Chionoecete tanneri. J. Fish. Res. Board Can. 35:1141–1149.CrossRefGoogle Scholar
  28. 28.
    Baross, J. A., J. F. Holden, B. C. Crump, M. Summit, and E. J. Mathur. 1994. Pressure and temperature effects on growth, survival and enzyme stability in deep-sea hyperthermophiles. Abstract, I&EC 0121. American Chemical Society, San Diego, Calif.Google Scholar
  29. 29.
    Bartholomew, J. W., and S. C. Rittenberg. 1949. Thermophilic bacteria from deep ocean bottom cores. J. Bacteriol. 57:658.Google Scholar
  30. 30.
    Bartlett, D. H., C. Kato, and K. Horikoshi. 1995. High pressure influences on gene and protein expression. Res. Microbiol. 146:697–706.PubMedCrossRefGoogle Scholar
  31. 31.
    Bauer, J. E., P. M. Williams, and E. R. M. Druffel. 1992. 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature 357:667–668.CrossRefGoogle Scholar
  32. 32.
    Benner, R., J. D. Pakulski, M. McCarthy, J. I. Hedges, and P. G. Hatcher. 1992. Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255:1561–1564.PubMedCrossRefGoogle Scholar
  33. 33.
    Bensoussan, M. G., P.-M. Scoditti, and A. J. M. Bianchi. 1984. Bacterial flora from echinoderm guts and associated sediment in the abyssal Veam Fault. Mar. Biol. 79:1–10.CrossRefGoogle Scholar
  34. 34.
    Bidle, K. A., M. Kastner, and D. H. Bartlett. 1999. A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the Cascadia margin (ODP site 892B). FEMS Microbiol. Lett. 177:101–108.PubMedCrossRefGoogle Scholar
  35. 35.
    Billen, G. 1982. Modelling the processes of organic matter degradation and nutrient in sedimentary systems, p. 15–52. In D. B. Nedwell and C. M. Brown (ed.), Sediment Microbiology. Academic Press, New York, N.Y.Google Scholar
  36. 36.
    Bischoff, J. L., and R. J. Rosenbauer. 1989. Salinity variations in submarine hydrothermal systems by layered double-diffusive convection. J. Geol. 97:613–623.CrossRefGoogle Scholar
  37. 37.
    Blochl, E., R. Rachel, S. Burggraf, D. Hafenbradl, H. W. Jannasch, and K. O. Stetter. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Boetius, A., and E. Damm. 1998. Benthic oxygen uptake, hydrolytic potentials and microbial biomass at the Arctic continental slope. Deep-Sea Res. I 45:239–275.CrossRefGoogle Scholar
  39. 39.
    Boetius, A., and K. Lochte. 1994. Regulation of microbial enzymatic degradation of organic matter in deep-sea sediments. Mar. Ecol. Prog. Ser. 104:299–307.CrossRefGoogle Scholar
  40. 40.
    Boetius, A., and K. Lochte. 1996. High proteolytic activities of deep-sea bacteria from oligotrophic polar sediments. Aquat. Microb. Ecol. 48:269–276.Google Scholar
  41. 41.
    Boivin-Jahns, V., R. Ruimy, A. Bianchi, S. Daumas, and R. Christen. 1996. Bacterial diversity in a deep-subsurface clay environment. Appl. Environ. Microbiol. 62:3405–3412.PubMedGoogle Scholar
  42. 42.
    Bowman, J. P., S. A. McCammon, M. V. Brown, D. S. Nichols, and T. A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63:3068–3078.PubMedGoogle Scholar
  43. 43.
    Brockman, F. J., B. A. Denovan, R. J. Hicks, and J. K. Fredrickson. 1989. Isolation and characterization of quinoline-degrading bacteria from subsurface sediments. Appl. Environ. Microbiol. 55:1029–1032.PubMedGoogle Scholar
  44. 44.
    Burggraf, S., H. W. Jannasch, B. Nicolaus, and K. O. Stetter. 1990. Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst. Appl. Microbiol. 13:24–28.CrossRefGoogle Scholar
  45. 45.
    Burggraf, S., K. O. Stetter, P. Rouviere, and C. R. Woese. 1991. Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. Syst. Appl. Microbiol. 14:346–349.PubMedCrossRefGoogle Scholar
  46. 46.
    Canganella, F., J. M. Gonzalez, M. Yanagibayashi, C. Kato, and K. Horikoshi. 1997. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch. Microbiol. 168:1–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Cary, S. C., M. T. Cottrell, J. L. Stein, F. Camacho, and D. Desbruyeres. 1997. Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl. Environ. Microbiol. 63:1124–1130.PubMedGoogle Scholar
  48. 48.
    Cavanaugh, C. M. 1994. Microbial symbiosis patterns of diversity in the marine environment. Am. Zool. 34:79–89.Google Scholar
  49. 49.
    Certes, A. 1884. Sur la culture, a l’abri des germes atmospheriques, des eaux et des sediments rapportes par les expeditions du Travailleur et du Talisman, 1882–1883. C. R. Acad. Sci. 98:690–693.Google Scholar
  50. 50.
    Chappelle, E. W., G. L. Picciolo, and J. W. Deming. 1978. Determination of bacterial content in fluids. Methods Enzymol. 57:65–72.CrossRefGoogle Scholar
  51. 51.
    Childress, J. J., and C. R. Fisher. 1992. The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr. Mar. Biol. Annu. Rev. 30:337–441.Google Scholar
  52. 52.
    Childress, J. J., C. R. Fisher, J. M. Brooks, M. C. Kennicutt II, R. Bidigare, and A. E. Anderson. 1986. A methanotrophic marine moluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308.PubMedCrossRefGoogle Scholar
  53. 53.
    Cho, B. C., and F. Azam. 1988. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332:441–442.CrossRefGoogle Scholar
  54. 54.
    Colquhoun, J. A., J. Mexson, M. Goodfellow, A. C. Ward, K. Horikoshi, and A. T. Bull. 1998. Novel rhodococci and other mycolate actinomycetes from the deep sea. Antonie van Leeuwenhoek 74:27–40.PubMedCrossRefGoogle Scholar
  55. 56.
    Cowen, J. P. 1989. Positive pressure effect on manganese binding by bacteria in deep-sea hydrothermal plumes. Appl. Environ. Microbiol. 55:764–766.PubMedGoogle Scholar
  56. 57.
    Cowen, J. P., G. J. Massoth, and R. A. Feely. 1990. Scavenging rates of dissolved manganese in a hydrothermal vent plume. Deep-Sea Res. 37:1619–1637.CrossRefGoogle Scholar
  57. 58.
    Cragg, B. A., and R. J. Parkes. 1994. Bacterial profiles in hydrothermally active deep sediment layers from middle valley (NE Pacific), sites 857 and 858. Proc. Ocean Drilling Program Sci. Results 139:509–516.Google Scholar
  58. 59.
    Crump, B. C., E. V. Armbrust, and J. A. Baross. 1999. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, estuary and adjacent coastal ocean. Appl. Environ. Microbiol. 65:3192–3204.PubMedGoogle Scholar
  59. 60.
    Dahlback, B., L. A. H. Gunnarsson, M. Hermansson, and S. Kjelleberg. 1982. Microbial investigations of surface microlayers, water column, ice and sediment in the Arctic Ocean. Mar. Ecol. Prog. Ser. 9:101–109.CrossRefGoogle Scholar
  60. 61.
    Dawe, L. L., and W. R. Penrose. 1978. “Bactericidal” property of seawater: death or debilitation? Appl. Environ. Microbiol. 35:829–833.PubMedGoogle Scholar
  61. 62.
    Dawes, E. A. 1985. Starvation, survival and energy reserves, p. 43–79. In M. Fletcher and G. D. Floodgate (ed.), Bacteria in Their Natural Environment. Special Publications of the Society for General Microbiology, no. 16. Academic Press, New York, N.Y.Google Scholar
  62. 63.
    de Angelis, M. A., J. A. Baross, and M. D. Lilley. 1991. Enhanced microbial methane oxidation in water from a deep-sea hydrothermal vent field at simulated in situ hydrostatic pressures. Limnol. Oceanogr. 36:565–569.CrossRefGoogle Scholar
  63. 64.
    de Angelis, M. A., A.-L. Reysenbach, and J. A. Baross 1991. Surfaces of hydrothermal vent invertebrates: Sites of elevated microbial CH4 oxidation activity. Limnol. Oceanogr. 36:570–577.CrossRefGoogle Scholar
  64. 65.
    de Angelis, M., M. D. Lilley, E. Olson, and J. A. Baross. 1993. Microbial methane oxidation in deep-sea hydrothermal plumes of the Endeavour Segment of Juan de Fuca Ridge. Deep-Sea Res. 40:1169–1186.CrossRefGoogle Scholar
  65. 66.
    DeFlaun, M. F., and L. M. Mayer. 1983. Relationships between bacteria and grain surfaces in intertidal sediments. Limnol Oceanogr. 28:873–881.CrossRefGoogle Scholar
  66. 67.
    DeFlaun, M. F., J. F. Paul, and W. H. Jeffrey. 1987. Distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments. Mar. Ecol. Prog. Ser. 38:65–73.CrossRefGoogle Scholar
  67. 68.
    Delaney, J. R., V. Robigou, R. E. McDuff, and M. K. Tivey. 1992. Detailed geologic relationships of a vigorous hydrothermal system: the Endeavour Vent Field, Northern Juan de Fuca Ridge. J. Geophys. Res. 97:19, 663–19, 682.Google Scholar
  68. 69.
    Delaney, J. R., D. S. Kelley, M. D. Lilley, D. A. Butterfield, J. A. Baross, W. S. D. Wilcock, R. W. Embley, and M. Summit. 1998. The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281:222–230.CrossRefGoogle Scholar
  69. 70.
    DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:5685–5689.PubMedCrossRefGoogle Scholar
  70. 71.
    DeLong, E. F. 1997. Marine microbial diversity: the tip of the iceberg. Trends Microbiol. 15:203–207.Google Scholar
  71. 72.
    DeLong, E. F., and A. A. Yayanos. 1985. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1102.PubMedCrossRefGoogle Scholar
  72. 73.
    DeLong, E. F., and A. A. Yayanos. 1986. Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl. Environ. Microbiol. 51: 730–737.PubMedGoogle Scholar
  73. 74.
    DeLong, E. F., and A. A. Yayanos. 1987. Properties of the glucose transport system in deep-sea bacteria. Appl. Environ. Microbiol. 53:527–532.PubMedGoogle Scholar
  74. 75.
    DeLong, E. F., D. G. Franks, and A. L. Alldredge. 1993. Phylogenetic diversity of aggregateattached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 38:924–934.CrossRefGoogle Scholar
  75. 76.
    DeLong, E. F., D. G. Franks, and A. Yayanos. 1997. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microbiol. 63:2105–2108.PubMedGoogle Scholar
  76. 77.
    DeLong, E. F., G. S. Wickham, and N. R. Pace. 1989. Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363.PubMedCrossRefGoogle Scholar
  77. 78.
    Deming, J. W. 1985. Bacterial growth in deep-sea sediment trap and boxcore samples. Mar. Ecol. Prog. Ser. 25:305–312.CrossRefGoogle Scholar
  78. 79.
    Deming, J. W. 1986. Ecological strategies of barophilic bacteria in the deep ocean. Microbiol. Sci. 3:205–211.PubMedGoogle Scholar
  79. 80.
    Deming, J. W. 1993. Psychrophily in the deep sea, p. 33–36. In R. Guerrero and C. Pedros-Alio (ed.), Trends in Microbial Ecology. Spanish Society for Microbiology, Barcelona, Spain.Google Scholar
  80. 81.
    Deming, J. W. 1997. Unusual or extreme high-pressure marine environments, p. 366–376. In C. J. Hurst (ed.), Manual of Environmental Microbiology. ASM Press, Washington, D.C.Google Scholar
  81. 82.
    Deming, J. W. 1998. Marine bioremediation, p. 19–29. In Proceedings of the US:EU Workshop on Marien Microorganisms—Research Issues for Biotechnology. European Commission on Marine Science and Technology, Brussels, Belgium.Google Scholar
  82. 83.
    Deming, J. W. 1998. Deep ocean environmental biotechnology. Curr. Opin. Biotechnol. 9:283–287.PubMedCrossRefGoogle Scholar
  83. 84.
    Deming, J. W., and J. A. Baross. 1993. Deep-sea smokers: windows to a subsurface biosphere? Geochim. Cosmochim. Acta 57:3219–3230.PubMedCrossRefGoogle Scholar
  84. 85.
    Deming, J. W., and J. A. Baross. 1993. The early diagenesis of organic matter: bacterial activity, p. 119–144. In M. H. Engel and S. A. Macko (ed.), Organic Geochemistry. Plenum Press, New York, N.Y.CrossRefGoogle Scholar
  85. 86.
    Deming, J. W., and R. R. Colwell. 1982. Barophilic bacteria associated with the digestive tracts of abyssal holothurians. Appl. Environ. Microbiol. 44:1222–1230.PubMedGoogle Scholar
  86. 87.
    Deming, J. W., and R. R. Colwell. 1985. Observations of barophilic microbial activity in samples of sediment and intercepted particulates from the Demerara Abyssal Plain. Appl. Environ. Microbiol. 50:1002–1006.PubMedGoogle Scholar
  87. 88.
    Deming, J. W., and A. L. Huston. An oceanographie perspective on microbial life at low temperatures with implications for polar ecology, biotechnology and astrobiology. In J. Seckbach (ed.), Cellular Origins and Life in Extreme Habitats. Kluwer Academic Publishers, Dordrecht, The Netherlands, inGoogle Scholar
  88. 89.
    Deming, J. W., and J. D. Wilkins. 1987. Effects of starvation on growth of Shewanella benthica, a barophilic bacterium from the deep ocean, abstr. N-82. In Abstr. Annu. Meet. Am. Soc. Microbiol. 1987. American Society for Microbiology, Washington, D.C.Google Scholar
  89. 90.
    Deming, J. W., and P. L. Yager. 1992. Natural bacterial assemblages in deep-sea sediments: towards a global view, p. 11–27. In G. T. Rowe and V. Pariente (ed.), Deep-Sea Food Chains and the Global Carbon Cycle. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  90. 91.
    Deming, J. W., G. L. Picciolo, and E. W. Chappelle. 1979. Important factors in ATP determinations using firefly luciferase: applicability of the assay to studies of native aquatic bacteria, p. 89–98. In J. W. Costerton and R. R. Colwell (ed.), Native Aquatic Bacteria, Enumeration, Activity, and Ecology. ASTM Special Technical Publication 695. ASTM, Philadelphia, Pa.CrossRefGoogle Scholar
  91. 92.
    Deming, J. W., P. S. Tabor, and R. R. Colwell. 1981. Barophilic growth of bacteria from intestinal tracts of deep-sea invertebrates. Microb. Ecol. 7:85–94.CrossRefGoogle Scholar
  92. 93.
    Deming, J. W., A. L. Reysenbach, S. A. Macko, and C. R. Smith. 1997. Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: Bone-colonizing bacteria and invertebrate endosymbionts. Microsc. Res. Tech. 37:162–170.PubMedCrossRefGoogle Scholar
  93. 94.
    Deming, J. W., H. Hada, R. R. Colwell, K. R. Luehrsen, and G. E. Fox. 1984. The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J. Gen. Microbiol. 130: 1911–1920.PubMedGoogle Scholar
  94. 95.
    Deming, J. W., L. K. Somers, W. L. Straube, D. G. Swartz, and M. T. MacDonell. 1988. Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst. Appl. Microbiol. 10:152–160.CrossRefGoogle Scholar
  95. 96.
    Desbruyeres, D., J. W. Deming, A. Dinet, and A. Khripounoff. 1985. Reactions de l’ecosysteme benthique profond aux perturbations: nouveaux resultats experimentaux, p. 193–208. In L. Laubier and C. Monniot (ed.), Peuplements Profonds du Golfe de Gascogne. IFREMER (Institute Francais de Recherche pour l’Exploitation de la Mer), Brest, France.Google Scholar
  96. 97.
    Dietz, A. S., and A. A. Yayanos. 1978. Silica gel media for isolating and studying bacteria under hydrostatic pressure. Appl. Environ. Microbiol. 36:966–968.PubMedGoogle Scholar
  97. 98.
    Dilmore, L. A., and M. A. Hood. 1986. Vibrios of some deep-water invertebrates. FEMS Microbiol. Lett. 35:221–224.CrossRefGoogle Scholar
  98. 99.
    DOE Subsurface Science Program’s Taylorsville Basin Working Group. 1994. D.O.E. seeks origins of deep subsurface bacteria. EOS Trans. Am. Geophys. Union 75:385,395–396.Google Scholar
  99. 100.
    Druffel, E. R. M., J. E. Bauer, P. M. Williams, S. Griffin, and D. Wolgast. 1996. Seasonal variability of particulate organic radiocarbon in the northeast Pacific Ocean. J. Geophys. Res. 101: 20,543–20,552.Google Scholar
  100. 101.
    Duffaud, G. D., O. B. d’Hennezel, A. S. Peek, A.-L. Reysenbach, and R. M. Kelly. 1998. Isolation and characterization of Thermococcus barossi, sp. nov., a hyperthermophilic Archaeon isolated from a hydrothermal vent flange formation. Syst. Appl. Microbiol. 21:40–49.PubMedCrossRefGoogle Scholar
  101. 102.
    Duncan, S., L. A. Glover, K. Killham, and J. I. Prosser. 1994. Luminescence-based detection of activity of starved and viable but nonculturable bacteria. Appl. Environ. Microbiol. 60:1308–1316.PubMedGoogle Scholar
  102. 103.
    Egorova, A. A. 1938. Thermophile bacteria in Arctic. C. R. (Doklady) Acad. Sci. URSS 19:649–651.Google Scholar
  103. 104.
    Erauso, G., A.-L. Reysenbach, A. Godfroy, J.-R. Meunier, B. Crump, F. Partensky, J. A. Baross, V. T. Marteinsson, N. R. Pace, G. Barbier, and D. Prieur. 1993. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch. Microbiol. 160:338–349.CrossRefGoogle Scholar
  104. 105.
    Etter, R. J., and F. Grassle. 1992. Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature 360:576–578.CrossRefGoogle Scholar
  105. 106.
    Feigl, F. 1958. Spot Tests in Inorganic Analyses, p. 600. D. Van Nostrand Co., Inc., Princeton, N.J.Google Scholar
  106. 107.
    Fiala, G., K. O. Stetter, H. W. Jannasch, T. A. Langworthy, and J. Madon. 1986. Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. Syst. Appl. Microbiol. 8:106–113.CrossRefGoogle Scholar
  107. 108.
    Fiala-Medioni, A., and H. Felbeck. 1990. Autotrophic processes in invertebrate nutrition: bacterial symbioses in bivalve molluscs. Comp. Physiol. 5:49–69.Google Scholar
  108. 109.
    Fisher, C. R. 1990. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2:399–436.Google Scholar
  109. 110.
    Fisk, M. R., and S. J. Giovannoni. 1999. Sources of nutrients and energy for a deep biosphere on Mars. J. Geophys. Res. Planets 104:11805–11815.CrossRefGoogle Scholar
  110. 111.
    Fossing, H., V. A. Gallardo, B. B. Jorgensen, M. Huttel, L. P. Nielsen, H. Schulz, D. E. Canfield, S. Forster, R. N. Glud, J. K. Gunderson, J. Kuver, N. B. Ramsing, A. Teske, B. Thamdrup, and O. Ulloa. 1995. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713–715.CrossRefGoogle Scholar
  111. 112.
    Fredrickson, J. K., and T. C. Onstott. 1996. Microbiology of deep subsurface environments. Sci. Am. 274:42–47.Google Scholar
  112. 113.
    Frischer, M. E., J. M. Thurmond, and J. H. Paul. 1993. Factors affecting competence in a high frequency of transformation Vibrio. J. Gen. Microbiol. 139:753–761.Google Scholar
  113. 114.
    Frischer, M. E., G. J. Stewart, and J. H. Paul. 1994. Plasmid transfer to indigenous marine bacterial populations by natural transformation. FEMS Microb. Ecol. 15:127–136.CrossRefGoogle Scholar
  114. 115.
    Fry, J. C., and M. J. Day (ed.). 1990. Bacterial Genetics in Natural Environments. Chapman and Hall, Ltd., London, U.K.Google Scholar
  115. 116.
    Fuhrman, J. A., and A. A. Davis. 1997. Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar. Ecol. Prog. Ser. 150:275–285.CrossRefGoogle Scholar
  116. 117.
    Fuhrman, J. A., and C. A. Suttle. 1993. Viruses in marine planktonic systems. Oceanogr. 6:51–63.Google Scholar
  117. 118.
    Fuhrman, J. A., K. McCallum, and A. A. Davis. 1992. Novel major archaebacterial group from marine plankton. Nature 356:148–149.PubMedCrossRefGoogle Scholar
  118. 119.
    Gage, J. D. 1996. Why are there so many species in deep-sea sediments? J. Exp. Mar. Biol. Ecol. 200:257–286.CrossRefGoogle Scholar
  119. 120.
    Gallardo, V. A. 1977. Large benthic microbial communities in sulphide biota under Peru-Chile subsurface countercurrent. Nature 268:331–332.CrossRefGoogle Scholar
  120. 121.
    Gauthier, M. J., B. Labedan, and V. A. Breittmayer. 1992. Influence of DNA supercoiling on the loss of culturability of Escherichia coli cells incubated in seawater. Mol. Ecol. 1:183–190.PubMedCrossRefGoogle Scholar
  121. 122.
    Geiselbrecht, A. D., R. P. Herwig, J. W. Deming, and J. T. Staley. 1996. Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments. Appl. Environ. Microbiol. 62:3344–3349.PubMedGoogle Scholar
  122. 123.
    Gest, H., and J. Mandelstam. 1987. Longevity of microorganisms in natural environments. Microbiol. Sci. 4(3):69–71.PubMedGoogle Scholar
  123. 124.
    Giovannoni, S. J., and S. C. Cary. 1993. Probing marine systems with ribosomal RNAs. Oceanography 6:95–104.Google Scholar
  124. 125.
    Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63.PubMedCrossRefGoogle Scholar
  125. 126.
    Godfroy, A., J.-R. Meunier, J. Guezennec, F. Lesongeur, G. Raguenes, A. Rimbault, and G. Barbier. 1996. Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Intl. J. Syst. Bacteriol. 46:1113–1119.CrossRefGoogle Scholar
  126. 127.
    Godfroy, A., F. Lesongeur, G. Raguenes, J. Querellou, E. Antoine, J.-R. Meunier, J. Guezennec, and G. Barbier. 1997. Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 47:622–626.PubMedCrossRefGoogle Scholar
  127. 128.
    Gold, T. 1992. The deep, hot biosphere. Proc. Natl. Acad. Sci. USA 89:6045–6049.PubMedCrossRefGoogle Scholar
  128. 129.
    Gonzalez, J. M., C. Kato, and K. Horikoshi. 1995. Thermococcus peptonophilus sp. nov., a fast growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch. Microbiol. 164:159–164.PubMedCrossRefGoogle Scholar
  129. 130.
    Gooday, A. J., and C. M. Turley. 1990. Responses by benthic organisms to inputs of organic material to the ocean floor: A review. Philos. Trans. R. Soc. London Ser. A 331:119–138.CrossRefGoogle Scholar
  130. 131.
    Gosink, J. J., and J. T. Staley. 1995. Biodiversity of gas vacuolate bacteria from antarctic sea ice and water. Appl. Environ. Microbiol. 61:3486–3489.PubMedGoogle Scholar
  131. 132.
    Gounot, A.-M. 1991. Bacterial life at low temperature: physiological aspects and biotechnological implications. J. Appl. Bacteriol. 71:386–397.PubMedCrossRefGoogle Scholar
  132. 133.
    Grassle, J. F., and N. J. Maciolek. 1992. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am. Nat. 139:313–341.CrossRefGoogle Scholar
  133. 134.
    Grote, R., L. Li, J. Tamaoka, C. Kato, K. Horikoshi, and G. Antranikian. 1999. Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough. Extremophiles 3:55–62.PubMedCrossRefGoogle Scholar
  134. 135.
    Gundersen, J. K., B. B. Jorgensen, E. Larsen, and H. W. Jannasch. 1992. Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360:454–456.CrossRefGoogle Scholar
  135. 136.
    Haldeman, D. L., P. S. Amy, D. C. White, and D. B. Ringelberg. 1994. Changes in bacteria recoverable from subsurface volcanic rock samples during storage at 4°C. Appl. Environ. Microbiol. 60:2697–2703.PubMedGoogle Scholar
  136. 137.
    Hamamoto, T., and K. Horikoshi. 1991. Characterization of an amylase from a psychrotrophic Vibrio isolated from a deep-sea mud sample. FEMS Microbiol. Lett. 84:79–84.CrossRefGoogle Scholar
  137. 138.
    Hamamoto, T., N. Takata, T. Kudo, and K. Horikoshi. 1995. Characteristic presence of polyunsaturated fatty acids in marine psychrophilic vibrios. FEMS Microbiol. Lett. 129:51–56.Google Scholar
  138. 139.
    Harmsen, H. J. M., D. Prieur, and C. Jeanthon. 1997. Distribution of microorganisms in deepsea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl. Environ. Microbiol. 63:2876–2883.PubMedGoogle Scholar
  139. 140.
    Haygood, M., and D. L. Distel. 1993. Bioluminescent symbionts of flashlight fishes and deep-sea anglerfishes form unique lineages related to the genus Vibrio. Nature 363:154–156.CrossRefGoogle Scholar
  140. 141.
    Haymon, R. M., D. J. Fornari, K. L. Von Damm, M. D. Lilley, M. R. Perfit, J. M. Edmond, W. C. Shanks III, R. A. Lutz, J. M. Grebmeier, S. Carbotte, D. Wright, E. McLaughlin, M. Smith, N. Beedle, and E. Olson. 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise Crest at 9°45-52′N. I. Direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth Planet. Sci. Lett. 119:85–119.CrossRefGoogle Scholar
  141. 142.
    Hedrick, D. B., R. J. Pledger, D. C. White, and J. A. Baross. 1992. In situ microbial ecology of hydrothermal vent sediments. FEMS Microb. Ecol. 101:1–10.CrossRefGoogle Scholar
  142. 143.
    Hei, D. J., and D. S. Clark. 1994. Pressure stabilization of proteins from extreme thermophiles. Appl. Environ. Microbiol. 60:932–939.PubMedGoogle Scholar
  143. 144.
    Helmke, E., and H. Weyland. 1986. Effect of hydrostatic pressure and temperature on the activity and synthesis of chitinases of Antarctic Ocean bacteria. Mar. Biol. 91:1–7.CrossRefGoogle Scholar
  144. 145.
    Helmke, E., and H. Weyland. 1995. Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Mar. Ecol. Prog. Ser. 117:269–287.CrossRefGoogle Scholar
  145. 146.
    Hermansson, M., and C. Linberg. 1994. Gene transfer in the marine environment. FEMS Microb. Ecol. 15:47–54.CrossRefGoogle Scholar
  146. 147.
    Hill, R. T., I. T. Knight, M. S. Anikis, and R. R. Colwell. 1993. Benthic distribution of sewage sludge indicated by Clostridium perfringens at a deep-ocean dump site. Appl. Environ. Microbiol. 59:47–51.PubMedGoogle Scholar
  147. 148.
    Holden, J. F., and J. A. Baross. 1993. Enhanced thermotolerance and temperature-induced changes in protein composition in the hyperthermophilic archaeon ES4. J. Bacteriol. 175:2839–2843.PubMedGoogle Scholar
  148. 149.
    Holden, J. F., and J. A. Baross. 1995. Enhanced thermotolerance by hydrostatic pressure in the deep-sea hyperthermophile Pyrococcus strain ES4. FEMS Microb. Ecol. 18:27–33.CrossRefGoogle Scholar
  149. 150.
    Holden, J. F., M. Summit, and J. A. Baross. 1998. Thermophilic and hyperthermophilic microorganisms in 3–30°C hydrothermal fluids following a deep-sea volcanic eruption. FEMS Microbiol. Ecol. 25:33–41.Google Scholar
  150. 151.
    Holden, J. F., M. W. W. Adams, and J. A. Baross. Heat-shock response in hyperthermophilic microorganisms. In Stress Genes: Role in Physiological Ecology, Progress in Microbial Ecology. Proceedings of the 8th International Symposium on Microbial Ecology, Halifax, Canada, in press.Google Scholar
  151. 152.
    Hood M. A., J. B. Guckert, D. C. White, and F. Deck. 1986. Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA and protein levels in Vibrio cholerae. Appl. Environ. Microbiol. 52:788–793.PubMedGoogle Scholar
  152. 153.
    Hoppe, H.-G. 1991. Microbial extracellular enzyme activity: a new key parameter in aquatic ecology, p. 60–83. In R. Chrost (ed.), Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York, N.Y.CrossRefGoogle Scholar
  153. 154.
    Huber, R., M. Kurr, H. W. Jannasch, and K. O. Stetter. 1989. A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature 342:833–834.CrossRefGoogle Scholar
  154. 155.
    Huber, R., P. Stoffers, J. L. Cheminee, H. H. Richnow, and K. O. Stetter. 1990. Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature 345:179–181.CrossRefGoogle Scholar
  155. 156.
    Huber, R., H. Jannasch, R. Rachel, T. Fuchs, and K. O. Stetter. 1997. Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst. Appl. Microbiol. 20:374–380.CrossRefGoogle Scholar
  156. 157.
    Huber, R., J. Stoehr, S. Hohenhaus, R. Rachel, S. Burggraf, H. W. Jannasch, and K. O. Stetter. 1995. Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment. Arch. Microbiol. 164:255–264.CrossRefGoogle Scholar
  157. 158.
    Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180:4765–4774.PubMedGoogle Scholar
  158. 158a.
    Huston, A. L., B. B. Krieger-Brockett, and J. W. Deming. Remarkably low temperature optima for extracellular enzyme activity from arctic bacteria and sea ice. Environ. Microbiol., in press.Google Scholar
  159. 159.
    Jannasch, H. W. 1979. Microbial turnover of organic matter in the deep sea. BioSci. 29:228–232.CrossRefGoogle Scholar
  160. 160.
    Jannasch, H. W., and M. Mottl. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725.PubMedCrossRefGoogle Scholar
  161. 161.
    Jannasch, H. W., and C. O. Wirsen. 1981. Morphological survey of microbial mats near deepsea thermal vents. Appl. Environ. Microbiol. 41:528–538.PubMedGoogle Scholar
  162. 162.
    Jannasch, H. W., and C. O. Wirsen. 1984. Variability of pressure adaptations in deep sea bacteria. Arch. Microbiol. 139:281–288.CrossRefGoogle Scholar
  163. 163.
    Jannasch, H. W., D. C. Nelson, and C. O. Wirsen. 1989. Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site. Nature 342:834–836.CrossRefGoogle Scholar
  164. 164.
    Jannasch, H. W., C. O. Wirsen, and K. W. Doherty. 1996. A pressurized chemostat for the study of marine barophilic and oligotrophic bacteria. Appl. Environ. Microbiol. 62:1593–1596.PubMedGoogle Scholar
  165. 165.
    Jannasch, H. W., C. O. Wirsen, and C. D. Taylor. 1982. Deep-sea bacteria: isolation in the absence of decompression. Science 216:1315–1317.PubMedCrossRefGoogle Scholar
  166. 166.
    Jannasch, H. W., C. O. Wirsen, S. J. Molyneaux, and T. A. Langworthy. 1988. Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydrothermal vents. Appl. Environ. Microbiol. 54:1203–1209.PubMedGoogle Scholar
  167. 167.
    Jeanthon, C., S. L’Haridon, A.-L. Reysenbach, E. Corre, M. Vernet, P. Messner, U. B. Sleytr, and D. Prieur. 1999. Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Intl. J. Syst. Bacteriol. 49:583–589.CrossRefGoogle Scholar
  168. 168.
    Jiang, S. C., and J. H. Paul. 1997. Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar. Ecol. Prog. Ser. 142:27–38.CrossRefGoogle Scholar
  169. 169.
    Johnstone, B. H., and R. D. Jones. 1988. Effects of light and CO on the survival of a marine ammonium-oxidizing bacterium during energy source deprivation. Appl. Environ. Microbiol. 54: 2890–2893.PubMedGoogle Scholar
  170. 170.
    Jones, P. G., R. A. VanBogelen, and F. C. Neidhardt. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169:2092–2095.PubMedGoogle Scholar
  171. 171.
    Jones, R. D., and R. Y. Morita. 1985. Survival of a marine ammonium oxidizer under energysource deprivation. Mar. Ecol. Prog. Ser. 26:175–179.CrossRefGoogle Scholar
  172. 172.
    Jones, W. J., C. E. Stugard, and H. W. Jannasch. 1989. Comparison of thermophilic methanogens from submarine hydrothermal vents. Arch. Microbiol. 151:314–318.CrossRefGoogle Scholar
  173. 173.
    Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe. 1983. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch. Microbiol. 136:254–261.CrossRefGoogle Scholar
  174. 174.
    Jorgensen, K. S., and J. M. Tiedje. 1993. Survival of denitrifiers in nitrate-free, anaerobic environments. Appl. Environ. Microbiol. 59:3297–3305.PubMedGoogle Scholar
  175. 175.
    Jorgensen, B. B., M. F. Isaksen, and H. W. Jannasch. 1992. Bacterial sulfate reduction above 100°C in deep-sea hydrothermal vent sediments. Science 258:1756–1757.PubMedCrossRefGoogle Scholar
  176. 176.
    Jumars, P. A., D. L. Penry, J. A. Baross, M. J. Perry, and B. W. Frost. 1989. Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion, and absorption in animals. Deep-Sea Res. 36:483–495.CrossRefGoogle Scholar
  177. 177.
    Jumars, P. A., L. M. Mayer, J. W. Deming, J. A. Baross, and R. A. Wheatcroft. 1990. Deepsea deposit-feeding strategies suggested by environmental and feeding constraints. Philos. Trans. R. Soc. London Ser. A 331:85–101.CrossRefGoogle Scholar
  178. 178.
    Jumars, P. A., J. W. Deming, P. S. Hill, P. L. Yager, and L. Karp-Boss. 1993. Physical determinants of diffusional advanatge in free-living, planktonic bacteria. Mar. Microb. Food Webs 7: 121–159.Google Scholar
  179. 179.
    Junge, K., J. T. Staley, and J. W. Deming. 1999. Phylogenetic diversity of numerically important bacteria cultured at subzero temperature from Arctic sea ice, abstr. N-159. In Gen. Meet. Soc. Microbiol. 1999. American Society for Microbiology, Washington, D.C.Google Scholar
  180. 180.
    Juniper, S. K., and B. M. Tebo. 1995. Microbe-metal interactions and mineral deposition at hydrothermal vents, p. 219–253. In D. M. Karl (ed.), Microbiology of Deep-Sea Hydrothermal Vents. CRC Press, New York, N.Y.Google Scholar
  181. 181.
    Kadko, D., J. A. Baross, and J. Alt. 1995. The magnitude and global implications of hydrothermal flux, p. 446–466. In S. Humphris, R. Zierenberg, L. Mullineaux, and R. Thomson (ed.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions, Geophysical Monograph 91. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  182. 182.
    Kaneko, T., and R. R. Colwell. 1975. Adsorption of Vibrio parahaemolyticus onto chitin and copepods. Appl. Environ. Microbiol. 29:269–274.Google Scholar
  183. 183.
    Karl, D. M. 1995. Ecology of free-living, hydrothermal vent microbial communities, p. 35–124. In D. M. Karl (ed.), Microbiology of Deep-Sea Hydrothermal Vents. CRC Press, New York, N.Y.Google Scholar
  184. 184.
    Karl, D. M., G. A. Knauer, and J. H. Martin. 1988. Downward flux of paniculate organic matter in the ocean: a particle decomposition paradox. Nature 332:438–441.CrossRefGoogle Scholar
  185. 185.
    Karl, D. M., C. O. Wirsen, and H. W. Jannasch. 1980. Deep-sea primary production at the Galapagos hydrothermal vents. Science 207:1345–1347.Google Scholar
  186. 186.
    Kato, C., N. Masui, and K. Horikoshi. 1996. Properties of obligately barophilic bacteria isolated from a sample of deep-sea sediment from the Izu-Bonin trench. J. Mar. Biotechnol. 4:96–99.Google Scholar
  187. 187.
    Kato, C., L. Li, J. Tamaoka, and K. Horikoshi. 1997. Molecular analyses of the sediment of the 11,000-m deep Mariana Trench. Extremophiles 1:117–123.PubMedCrossRefGoogle Scholar
  188. 188.
    Kaye, J. Z., and J. A. Baross. 1998. Salt-tolerant microbes isolated from hydrothermal-vent environments. EOS Transactions 79(45):F59.Google Scholar
  189. 189.
    Kellogg, C. A., J. B. Rose, S. C. Jiang, J. M. Thurmond, and J. H. Paul. 1996. Genetic diversity of related vibriophages isolated from marine environments around Florida and Hawaii, USA. Mar. Ecol. Prog. Ser. 120:89–98.CrossRefGoogle Scholar
  190. 190.
    Kerr, R. A. 1997. Once, maybe still, an ocean on Europa. Science 277:764–765.CrossRefGoogle Scholar
  191. 191.
    Kim, J., and C. E. ZoBell. 1972. Agarase, amylase, cellulase, and chitinase activity at deep-sea pressures. J. Oceanogr. Soc. Jpn. 28:1–7.CrossRefGoogle Scholar
  192. 192.
    King, J. M. H., P. M. DiGrazia, B. Applegate, R. Burlage, J. Sanseverino, P. Dunbar, F. Larimer, and G. S. Sayler. 1990. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781.PubMedCrossRefGoogle Scholar
  193. 193.
    Kjelleberg, S., K. B. G. Flardh, T. Nystrom, and D. J. W. Moriarty. 1993. Growth limitation and starvation of bacteria, p. 289–320. In T. E. Ford (ed.), Aquatic Microbiology—an Ecological Approach. Blackwell Scientific Publ., Inc., Cambridge, Mass.Google Scholar
  194. 194.
    Kobayashi, T., Y. S. Kwak, T. Akiba, T. Kudo, and K. Horikoshi. 1994. Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst. Appl. Microbiol. 17:232–236.CrossRefGoogle Scholar
  195. 195.
    Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415–420.PubMedCrossRefGoogle Scholar
  196. 196.
    Kohlmeyer, J., and E. Kohlmeyer. 1979. Marine Mycology: the Higher Fungi. Academic Press, New York, N.YGoogle Scholar
  197. 197.
    Koike, I., S. Hara, K. Terauchi, and K. Kogure. 1990. Role of sub-micron particles in the ocean. Nature 345:242–244.CrossRefGoogle Scholar
  198. 198.
    Kong, L., and D. Dubnau. 1994. Regulation of competence-specific gene expression by mecmediated protein-protein interaction in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91:5793–5797.PubMedCrossRefGoogle Scholar
  199. 199.
    Kramer, J. G., and F. L. Singleton. 1992. Variations in rRNA content of marine Vibrio spp. during starvation-survival and recovery. Appl. Environ. Microbiol. 58:201–207.PubMedGoogle Scholar
  200. 200.
    Kriss, A. E. 1963. Marine Microbiology (Deep Sea). Oliver and Boyd, Edinburgh, Scotland.Google Scholar
  201. 201.
    Krumholz, L. R. 1997. Confined subsurface microbial communities in Cretaceous rock. Nature 386:64–66.CrossRefGoogle Scholar
  202. 202.
    Kurr, M., R. Huber, H. K. Konig, H. W. Jannasch, H. Fricke, A. Trincome, J. K. Kristjansson, and K. O. Stetter. 1991. Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens growing at 100°C. Arch. Microbiol. 156:239–247.CrossRefGoogle Scholar
  203. 203.
    Kushner, D. J. 1985. The Halobacteriaceae, p. 171–214. In C. R. Woese and R. S. Wolfe (ed.), The Bacteria: a Treatise on Structure and Function, Vol. VIII. Archaebacteria. Academic Press, Inc., Orlando, Fla.Google Scholar
  204. 204.
    Kwak, Y. S., T. Kobayashi, T. Akiba, K. Horikoshi, and Y. B. Kim. 1995. A hyperthermophilic sulfur-reducing archaebacterium Thermococcus sp. DT 1331 isolated from a deep-sea hydrothermal vent. Biosci. Biotechnol. Biochem. 59:1666–1669.PubMedCrossRefGoogle Scholar
  205. 205.
    Lee, S., and P. F. Kemp. 1994. Single-cell RNA content of natural marine planktonic bacteria measured by hybridization with multiple 16S rRNA-targeted fluorescent probes. Limnol. Oceanogr. 39(4):869–879.CrossRefGoogle Scholar
  206. 206.
    Levy, S. B., and R. V. Miller. 1989. Gene Transfer in the Environment. McGraw-Hill Book Co., New York, N.Y.Google Scholar
  207. 207.
    Lewis, D. L., and D. K. Gattie. 1991. The ecology of quiescent microbes. ASM News 57:27–32.Google Scholar
  208. 208.
    Lilley, M. D., J. A. Baross, and L. I. Gordon. 1983. Reduced gases and bacteria in hydrothermal fluids: the Galapagos spreading center and 21°N East Pacific Rise, p. 411–449. In P. Rona, K. Bostrom, L. Laubier, and K. Smith (ed.), Hydrothermal Processes at Seafloor Spreading Centers. Plenum Press, New York, N.Y.Google Scholar
  209. 209.
    Lilley, M. D., D. A. Butterfield, J. E. Lupton, S. A. Macko, and R. E. McDuff. 1993. Anomalous CH4 and NH4+ concentrations at a mid-ocean ridge hydrothermal system: combined effects of sediments and phase separation. Nature 364:45–47.CrossRefGoogle Scholar
  210. 210.
    Lilley, M. D., R. A. Feely, and J. H. Trefry. 1995. Chemical and biological transformations in hydrothermal plumes, p. 369–391. In S. Humphris, R. Zierenberg, L. Mullineaux, and R. Thomson (ed.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions, Geophysical Monograph 91. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  211. 211.
    Lindquist, S. 1992. Heat-shock proteins and stress tolerance in microorganisms. Curr. Opin. Genet. Dev. 2:748–755.PubMedCrossRefGoogle Scholar
  212. 212.
    Lindsay, J. A. 1995. Is thermophily a transferable property in bacteria? Crit. Rev. Microbiol. 21: 165–174.PubMedCrossRefGoogle Scholar
  213. 213.
    Lochte, K., and C. M. Turley. 1988. Bacteria and cyanobacteria associated with phytodetritus in the deep sea. Nature 333:67–69.CrossRefGoogle Scholar
  214. 214.
    Lorenz, M. G., and W. Wackernagel. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58:563–602.PubMedGoogle Scholar
  215. 215.
    MacDonell, M. T., and R. R. Colwell. 1985. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. Appl. Microbiol. 6:171–182.CrossRefGoogle Scholar
  216. 216.
    Mandranack, K. W., and B. M. Tebo. 1993. Manganese scavenging and oxidation at hydrothermal vents and in vent plumes. Geochim. Cosmochim. Acta 57:3907–3923.CrossRefGoogle Scholar
  217. 217.
    Marteinsson, V. T., P. Moulin, J. L. Birrien, A. Gambacorta, M. Vernet, and D. Prieur. 1997. Physiological responses to stress conditions and barophilic behavior of the hyperthermophilic vent archaeon Pyrococcus abyssi. Appl. Environ. Microbiol. 63:1230–1236.PubMedGoogle Scholar
  218. 218.
    Maruyama, A., R. Taniguchi, H. Tanaka, H. Ishiwata, and T. Higashihara. 1997. Lowtemperature adaptation of deep-sea bacteria isolated from the Japan Trench. Mar. Biol. 128:705–711.CrossRefGoogle Scholar
  219. 219.
    Mayer, L. M. 1989. Extracellular proteolytic activity in sediments of an intertidal mudflat. Limnol Oceanogr. 34(6):973–981.CrossRefGoogle Scholar
  220. 220.
    McCallum, K. L., and W. E. Inniss. 1990. Thermotolerance, cell filamentation and induced protein synthesis in psychrophilic and psychrotrophic bacteria. Arch. Microbiol. 153:585–590.CrossRefGoogle Scholar
  221. 221.
    McCallum, K. L., J. J. Heikkila, and W. E. Inniss. 1986. Temperature-dependent pattern of heatshock protein synthesis in psychrophilic and psychrotrophic micro-organisms. Can. J. Microbiol. 32:516–521.CrossRefGoogle Scholar
  222. 222.
    McDougald, D., S. A. Rice, D. Weichart, and S. Kjelleberg. 1998. Nonculturability: adaptation or debilitation? FEMS Microbiol. Ecol. 25:1–9.CrossRefGoogle Scholar
  223. 223.
    McInerney, J. O., M. Wilkinson, J. W. Patching, T. M. Embley, and R. Powell. 1995. Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit-feeder. Appl. Environ. Microbiol. 61:1646–1648.PubMedGoogle Scholar
  224. 224.
    McKay, D. S., E. K. Gibson, K. L. Thomas-Keptra, H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Bhillier, C. R. Maechling, and R. N. Zare. 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930.PubMedCrossRefGoogle Scholar
  225. 225.
    McLaughlin, B. 1997. Hydrogen oxidation in hydrothermal plumes. Ph.D. Thesis. University of Washington, Seattle.Google Scholar
  226. 226.
    Meyer-Reil, L.-A. 1986. Measurement of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments. Mar. Ecol. Prog. Ser. 31:143–149.CrossRefGoogle Scholar
  227. 227.
    Meyer-Reil, L.-A., and M. Koster. 1992. Microbial life in pelagic sediments: the impact of environmental parameters on enzymatic degradation of organic material. Mar. Ecol. Prog. Ser. 81: 65–72.CrossRefGoogle Scholar
  228. 228.
    Morgan, P., and C. S. Dow. 1986. Bacterial adaptations for growth in low nutrient environments, p. 187–214. In R. A. Herbert and B. A. Codd (ed.), Microbes in Extreme Environments. Academic Press, London, U.K.Google Scholar
  229. 229.
    Morita, R. Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39:144–167.PubMedGoogle Scholar
  230. 230.
    Morita, R. Y. 1976. Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria, p. 279–298. In T. G. R. Gray and J. R. Postgate (ed.), The Survival of Vegetative Microbes. Cambridge University Press, Cambridge, U.K.Google Scholar
  231. 231.
    Morita, R. Y. 1997. Bacteria in Oligotrophic Environments: Starvation-Survival Lifestyle. Chapman and Hall Microbiology Series, Chapman and Hall, New York, N.Y.Google Scholar
  232. 232.
    Mortimoto, R. I., A. Tissieres, and C. Georgopoulos. 1990. The stress response, function of the proteins, and perspectives, p. 1–36. In R. I. Mortimoto, A. Tissieres, and C. Georgopoulos (ed.), Stress Proteins in Biology and Medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y.Google Scholar
  233. 233.
    Moyer, C. L., and R. Y. Morita. 1989. Effect of growth rate and starvation-survival on the viability and stability of a psychrophilic marine bacterium. Appl. Environ. Microbiol. 55:1122–1127.PubMedGoogle Scholar
  234. 234.
    Moyer, C. L., F. C. Dobbs, and D. M. Karl. 1995. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61:1555–1562.PubMedGoogle Scholar
  235. 235.
    Msadek, T., F. Kunst, and G. Rapoport. 1994. MecB Bacillus subtilis, a member of the ClpC ATPase family, is a pleotropic regulator controlling competence, gene expression and growth at high temperature. Proc. Natl. Acad. Sci. USA 91:5788–5792.PubMedCrossRefGoogle Scholar
  236. 236.
    Mukund, S., and M. W. W. Adams. 1991. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium Pyrococcus furiosus is an aldehyde ferredoxin oxidoreductase. J. Biol. Chem. 266:14208–14216.PubMedGoogle Scholar
  237. 237.
    Murray, A. E., K. Y. Wu, C. L. Moyer, D. M. Karl, and E. F. DeLong. 1999. Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean. Aquat. Microb. Ecol. 18: 263–273.CrossRefGoogle Scholar
  238. 238.
    Nealson, K. H. 1982. Bacterial ecology of the deep sea, p. 179–200. In W. G. Ernst and J. G. Morin (ed.), The Environment of the Deep Sea, Rubey Vol. II. Prentice-Hall, Inc., Englewood Cliffs, N.J.Google Scholar
  239. 239.
    Nedwell, D. B., and M. Rutter. 1994. Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: low temperature diminishes affinity for substrate uptake. Appl. Environ. Microbiol. 60:1984–1992.PubMedGoogle Scholar
  240. 240.
    Neidhardt, F. C., and R. A. VanBogelen. 1987. Heat shock response, p. 1334–1345. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.Google Scholar
  241. 241.
    Nelson, D. C., and C. R. Fisher. 1995. Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps, p. 125–167. In D. M. Karl (ed.), The Microbiology of Deep-Sea Hydrothermal Vents. CRC Press, New York, N.Y.Google Scholar
  242. 242.
    Nelson, D. C., C. O. Wirsen, and H. W. Jannasch. 1989. Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl. Environ. Microbiol. 55:2909–2917.PubMedGoogle Scholar
  243. 243.
    Nelson, D., R. M. Haymon, M. Lilley, and R. Lutz. 1991. Rapid growth of unusual hydrothermal bacteria observed at new vents during ADVENTURE dive program to the EPR crest at 9°45′–52′N. EOS, Trans. Amer. Geophys. Un. 72(Suppl.):481.Google Scholar
  244. 244.
    Nelson, D. R., Y. Sadlowski, M. Eguchi, and S. Kjelleberg. 1997. The starvation-stress response of Vibrio (Listonella) anguillarum. Microbiology 143:2305–2312.CrossRefGoogle Scholar
  245. 245.
    Nickerson, K. W. 1984. An hypothesis on the role of pressure in the origin of life. Theoret. Biol. 110:487–499.CrossRefGoogle Scholar
  246. 246.
    Nilsson, L., J. D. Oliver, and S. Kjelleberg. 1991. Resuscitation of Vibrio vulnificus cells from the viable but nonculturable state. J. Bacteriol. 173:5054–5059.PubMedGoogle Scholar
  247. 247.
    Nissen, H. 1987. Long term starvation of a marine bacterium, Alteromonas denitrificans, isolated from a Norwegian fjord. FEMS Microbiol. Ecol. 45:173–184.CrossRefGoogle Scholar
  248. 248.
    Nogi, Y., and C. Kato. 1999. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 3:71–77.PubMedCrossRefGoogle Scholar
  249. 249.
    Nogi, Y., C. Kato, and K. Horikoshi. 1998. Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J. Gen. Appl. Microbiol. 44:289–295.PubMedCrossRefGoogle Scholar
  250. 250.
    Nogi, Y., C. Kato, and K. Horikoshi. 1998. Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch. Microbiol. 170:331–338.PubMedCrossRefGoogle Scholar
  251. 251.
    Nogi, Y., N. Masui, and C. Kato. 1998. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7.PubMedCrossRefGoogle Scholar
  252. 252.
    Norkrans, B., and B. O. Stehn. 1978. Sediment bacteria in the deep Norwegian Sea. Mar. Biol. 47:201–209.CrossRefGoogle Scholar
  253. 253.
    Novitsky, J. A. 1990. Evidence for sedimenting particles as the origin of the microbial community in a coastal marine sediment. Mar. Ecol. Prog. Ser. 60:161–167.CrossRefGoogle Scholar
  254. 254.
    Novitsky, J. A., and R. Y. Morita. 1976. Morphological characteristics of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl. Environ. Microbiol. 32:617–622.PubMedGoogle Scholar
  255. 255.
    Novitsky, J. A., and R. Y. Morita. 1977. Survival of a psychrophilic marine vibrio under longterm nutrient starvation. Appl. Environ. Microbiol. 33:635–641.PubMedGoogle Scholar
  256. 256.
    Novitsky, J. A., and R. Y. Morita. 1978. Starvation-induced barotolerance as a survival mechanism of a psychrophilic marine vibrio in the waters of the Antarctic Convergence. Mar. Biol. 49:7–10.CrossRefGoogle Scholar
  257. 257.
    Nystrom, T., and S. Kjelleberg. 1989. Role of protein synthesis in cell division and starvation induced resistance to autolysis of a marine Vibrio during the initial phase of starvation. J. Gen. Microbiol. 135:1599–1606.Google Scholar
  258. 258.
    Oliver, J. D. 1993. Formation of viable but nonculturable cells, p. 239–272. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.Y.Google Scholar
  259. 259.
    Oliver, J. D., and W. F. Stringer. 1984. Lipid composition of a psychrophilic marine Vibrio sp. during starvation-induced morphogenesis. Appl. Environ. Microbiol. 47:461–466.PubMedGoogle Scholar
  260. 260.
    Oliver, J. D., L. Nilsson, and S. Kjelleberg. 1991. Formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl. Environ. Microbiol. 57:2640–2644.PubMedGoogle Scholar
  261. 261.
    Olsen, R. H., and E. S. Metcalf. 1968. Conversion of mesophiles to psychrophilic bacteria. Science 162:1288–1289.PubMedCrossRefGoogle Scholar
  262. 262.
    Otto, K., D. Weichart, and S. Kjelleberg. 1997. Plasmid transfer between marine Vibrio strains during predation by the heterotrophic microflagellate Cafeteria roenbergensis. Appl. Environ. Microbiol. 63:749–752.PubMedGoogle Scholar
  263. 263.
    Pace, N. R., D. A. Stahl, D. L. Lane, and G. J. Olsen. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microb. Ecol. 9:1–55.Google Scholar
  264. 264.
    Parkes, R. J., B. A. Cragg, J. C. Fry, R. A. Herbert, and J. W. T. Wimpenny. 1989. Bacterial biomass and activity in deep sediment layers from the Peru margin. In H. Charnook, J. M. Edmond, I. N. McCave, A. L. Rice, and T. R. S. Wilson (ed.), The Deep Sea Bed: Its Physics, Chemistry and Biology. Philos. Trans. R. Soc. London Ser. A 331:139–153.Google Scholar
  265. 265.
    Parsell, D. A., Y. Sanchez, J. D. Stitzel, and S. Lindquist. 1991. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature 353:270–273.PubMedCrossRefGoogle Scholar
  266. 266.
    Paul, J. H., W. H. Jeffrey, and M. F. DeFlaun. 1987. Dynamics of extracellular DNA in the marine environment. Appl. Environ. Microbiol. 53:170–179.PubMedGoogle Scholar
  267. 267.
    Petermann, H., and U. Bleil. 1993. Detection of live magnetotactic bacteria in South Atlantic deep-sea sediments. Earth Planet Sci. Lett. 117:223–228.CrossRefGoogle Scholar
  268. 268.
    Phipps, B. M., A. Hoffman, K. O. Stetter, and W. Baumeister. 1991. A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J. 10:1711–1722.PubMedGoogle Scholar
  269. 269.
    Plante, C. J., P. A. Jumars, and J. A. Baross. 1990. Digestive associations between marine detritivores and bacteria. Annu. Rev. Ecol. Syst. 21:93–127.CrossRefGoogle Scholar
  270. 270.
    Pledger, R. J., and J. A. Baross. 1989. Characterization of an extremely thermophilic archaebacterium isolated from a black smoker polychaete (Paralvinella sp.) at the Juan de Fuca Ridge. Syst. Appl. Microbiol. 12:249–256.CrossRefGoogle Scholar
  271. 271.
    Pledger, R. J., and J. A. Baross. 1991. Preliminary description and nutritional characterization of a heterotrophic archaebacterium growing at temperatures of up to 110°C isolated from a submarine hydrothermal vent environment. J. Gen. Microbiol. 137:203–211.Google Scholar
  272. 272.
    Pledger, R. J., B. C. Crump, and J. A. Baross. 1994. A barophilic response by two hyperthermophilic, hydrothermal vent Archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure. FEMS Microbiol. Ecol. 14:233–242.CrossRefGoogle Scholar
  273. 273.
    Pley, U., J. Schipka, A. Gambacorta, H. W. Jannasch, H. Fricke, R. Rachel, and K. O. Stetter. 1991. Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine Archaeal hyperthermophile growing at 110°C. Syst. Appl. Microbiol. 14:245–253.CrossRefGoogle Scholar
  274. 274.
    Poindexter, J. S. 1987. Bacterial responses to nutrient limitation, p. 283–317. In M. Fletcher, T. R. G. Gray and J. G. Jones (ed.), Ecology of Microbial Communities. Cambridge Univ. Press, London, U.K.Google Scholar
  275. 275.
    Poremba, K. 1995. Hydrolytic enzymatic activity in deep-sea sediments. FEMS Microb. Ecol. 16: 213–222.CrossRefGoogle Scholar
  276. 276.
    Preston, C. M., K. Y. Wu, T. F. Molinski, and E. F. DeLong. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci. USA 93:6241–6246.PubMedCrossRefGoogle Scholar
  277. 277.
    Preyer, J. M., and J. D. Oliver. 1993. Starvation-induced thermal tolerance as a survival mechanism in a psychrophilic marine bacterium. Appl. Environ. Microbiol. 59:2653–2656.PubMedGoogle Scholar
  278. 278.
    Quigley, M. M., and R. R. Colwell. 1968. Properties of bacteria isolated from deep-sea sediments. J. Bacteriol. 95:211–220.PubMedGoogle Scholar
  279. 279.
    Raghukumar, C., and S. Raghukumar. 1998. Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat. Microb. Ecol. 15:153–163.CrossRefGoogle Scholar
  280. 280.
    Reeburgh, W. S. 1976. Methane consumption in the Cariaco Trench waters and sediments. Earth Planet. Sci. Lett. 28:337–344.CrossRefGoogle Scholar
  281. 281.
    Reichardt, W. 1988. Impact of the Antarctic benthic fauna on the enrichment of biopolymerdegrading psychrophilic bacteria. Microb. Ecol. 15:311–321.CrossRefGoogle Scholar
  282. 282.
    Regnard, P. 1884. Note sur les conditions de la vie dans les profondeurs de la mer. C. R. Soc. Biol. 36:164–168.Google Scholar
  283. 283.
    Relexans, J.-C., J. Deming, A. Dinet, J. F. Gaillard, and M. Sibuet. 1996. Sedimentary organic matter and micro-meiobenthos with relation to trophic conditions in the tropical northeast Atlantic. Deep-Sea Res. 43:1343–1368.CrossRefGoogle Scholar
  284. 284.
    Reysenbach, A-L., and J. W. Deming. 1991. Effects of hydrostatic pressure on growth of hyperthermophilic archaebacteria from the Juan de Fuca Ridge. App. Environ. Microbiol. 57:1271–1274.Google Scholar
  285. 285.
    Reysenbach, A-L., R. Pledger, G. Erauso, D. Prieur, J. Baross, J. W. Deming, and N. R. Pace. 1993. Phylogenetic characterization of sulfur-reducing archaebacteria from two geographically distinct deep-sea hydrothermal vent sites. Abstract, Sixth International Symposium on Microbial Ecology, 6–11 Sept, Barcelona, Spain.Google Scholar
  286. 286.
    Rice, S. A., and J. D. Oliver. 1992. Starvation response of the marine barophile CNPT-3. Appl. Environ. Microbiol. 58:2432–2437.PubMedGoogle Scholar
  287. 287.
    Ritzrau, W. 1997. Pelagic microbial activity in the Northeast Water Polynya, summer 1992. Polar Biol. 17:259–268.CrossRefGoogle Scholar
  288. 288.
    Rochelle, P. A., J. C. Fry, R. J. Parkes, and A. J. Weightman. 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett. 100:59–66.Google Scholar
  289. 289.
    Rosenberg, M., and S. Kjelleberg. 1986. Hydrophobic interactions: role in bacterial adhesion. Adv. Microb. Ecol. 9:353–393.Google Scholar
  290. 290.
    Roslev, P., and G. M. King. 1994. Survival and recovery of methanotrophic bacteria starved under oxic and anoxic conditions. Appl. Environ. Microbiol. 60:2602–2608.PubMedGoogle Scholar
  291. 291.
    Roszak, D., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microb. Rev. 51:365–379.Google Scholar
  292. 292.
    Rowe, G. T., M. Sibuet, J. W. Deming, A. Khripounoff, J. Tietjen, S. Macko, and R. Theroux. 1991. “Total” sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos. Mar. Ecol. Prog. Ser. 79:99–114.CrossRefGoogle Scholar
  293. 293.
    Ruger, H.-J. 1988. Substrate-dependent cold adaptations in some deep-sea sediment bacteria. Syst. Appl. Microbiol. 11:90–93.CrossRefGoogle Scholar
  294. 294.
    Russell, N. J. 1984. Mechanisms of thermal adaptation in bacteria: blueprints for survival. TIBS 9(3):108–112.Google Scholar
  295. 295.
    Sakiyama, T., and K. Ohwada. 1997. Isolation and growth characteristics of deep-sea barophilic bacteria from the Japan trench. Fish. Sci. (Tokyo) 63:228–232.Google Scholar
  296. 296.
    Sanchez, Y., and S. L. Lindquist. 1990. HSP104 required for induced thermotolerance. Science 148:1112–1115.CrossRefGoogle Scholar
  297. 297.
    Schmidt, T. M., E. F. DeLong, and N. R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173:4371–4378.PubMedGoogle Scholar
  298. 298.
    Schuliger, J. W., S. H. Brown, J. A. Baross, and R. M. Kelly. 1993. Purification and characterization of a novel amylolytic enzyme from ES4, a marine hyperthermophilic archaebacterium. Mol. Mar. Biol. Biotechnol. 2:76–87.Google Scholar
  299. 299.
    Schultz, J. E., G. I. Latter, and A. Matin. 1988. Differential regulation by cyclic AMP of starvation protein synthesis in Escherichia coli. J. Bacteriol. 170:3903–3909.PubMedGoogle Scholar
  300. 300.
    Shut, F., R. A. Prins, and J. C. Gottschal. 1997. Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat. Microb. Ecol. 12:177–202.CrossRefGoogle Scholar
  301. 301.
    Sieburth, J. McN. 1987. Contrary habitats for redox-specific processes: methanogenesis in oxic waters and oxidation in anoxic waters, p. 11–38. In M. A. Sleigh (ed.), Microbes in the Sea. Ellis Horwood Limited, West Sussex, U.K.Google Scholar
  302. 302.
    Smith, J. E., and J. D. Oliver. 1991. The effects of hydrostatic pressure on bacterial attachment. Biofouling 0305-310.Google Scholar
  303. 303.
    Sochard, M. R., D. F. Wilson, B. Austin, and R. R. Colwell. 1979. Bacteria associated with the surface and gut of marine copepods. Appl. Environ. Microbiol. 37:750–759.Google Scholar
  304. 304.
    Southward, A. J., E. C. Southward, P. R. Dando, G. H. Rau, H. Felbeck, and H. Flugel. 1981. Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature 293:616–620.CrossRefGoogle Scholar
  305. 305.
    Squires, C. L., S. Pedersen, B. M. Ross, and C. Squires. 1991. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173:4254–4262.PubMedGoogle Scholar
  306. 306.
    Stein, J. L., T. L. Marsh, K. Y. Wu, H. Shizuya, and E. F. DeLong. 1996. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J. Bacteriol. 178:591–599.PubMedGoogle Scholar
  307. 307.
    Stetter, K. O., G. Fiala, G. Huber, R. Huber, and A. Segerer. 1990. Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75:117–124.CrossRefGoogle Scholar
  308. 308.
    Stetter, K. O. 1996. Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18:149–158.CrossRefGoogle Scholar
  309. 309.
    Stevenson, H. L. 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4:127–133.CrossRefGoogle Scholar
  310. 310.
    Straube, W. L., J. W. Deming, C. C. Somerville, R. R. Colwell, and J. A. Baross. 1990. Particulate DNA in smoker fluids: evidence for existence of microbial populations in hot hydrothermal systems. Appl. Environ. Microbiol. 56:1440–1447.PubMedGoogle Scholar
  311. 311.
    Summit, M., and J. A. Baross. 1998. Thermophilic subseafloor microorganisms from the 1996 North Gorda Ridge eruption. Deep-Sea Research II 45:2751–2766.CrossRefGoogle Scholar
  312. 312.
    Summit, M., B. Scott, K. Nielson, E. Mathur, and J. Baross. 1998. Pressure enhances thermal stability of DNA polymerase from three thermophilic organisms. Extremophiles 2:339–345.PubMedCrossRefGoogle Scholar
  313. 313.
    Summit, M., A. Peacock, D. Ringelberg, D. C. White, and J. A. Baross. Estimation of microbial biomass and community composition in hot, hydrothermally influenced sediments from Middle Valley, Juan de Fuca Ridge. Proc. ODP Sci. Res. Leg 169, in press.Google Scholar
  314. 314.
    Takai, K., A. Inoue, and K. Horikoshi. 1999. Thermaerobacter marianensis gen. nov., sp. nov., an anaerobic thermophilic marine bacterium from the 11,000-m deep Mariana Trench. Intl. J. Syst. Bacteriol. 49:619–628.CrossRefGoogle Scholar
  315. 315.
    Takami, H., A. Inoue, F. Fuji, and K. Horikoshi. 1997. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microb. Lett. 152:279–285.CrossRefGoogle Scholar
  316. 316.
    Taylor, C. D., and C. O. Wirsen. 1997. Microbiology and ecology of filamentous sulfur formation. Science 277:1483–1485.CrossRefGoogle Scholar
  317. 317.
    Trent, J. D., and A. A. Yayanos. 1985. Pressure effects on the temperature range for growth and survival of the marine bacterium Vibrio harveyi. Mar. Biol. 89:165–172.CrossRefGoogle Scholar
  318. 318.
    Trent, J. D., J. Osipiuk, and T. Pinkau. 1990. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12. J. Bacteriol. 172:1478–1484.PubMedGoogle Scholar
  319. 319.
    Trent, J. D., E. Nimmesgern, J. S. Wall, F.-U. Hartl, and A. L. Horwich. 1991. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 254:490–493.CrossRefGoogle Scholar
  320. 320.
    Tunnicliffe, V. 1992. Hydrothermal-vent communities of the deep sea. Am. Sci. 80:336–349.Google Scholar
  321. 321.
    Tunnicliffe, V., R. W. Embley, J. F. Holden, D. A. Butterfield, G. J. Massoth, and S. K. Juniper. 1997. Biological colonization of new hydrothermal vents following an eruption on Juan de Fuca Ridge. Deep-Sea Res. I 44:1627–1654.CrossRefGoogle Scholar
  322. 322.
    Tuovial, B. J., F. C. Dobbs, P. A. LaRock, and B. Z. Siegel. 1987. Preservation of ATP in hypersaline environments. Appl. Environ. Microbiol. 53:2749–2753.Google Scholar
  323. 323.
    Turk, V., A. S. Rehnstam, E. Lundberg, and A. Hagstrom. 1992. Release of bacterial DNA by marine nanoflagellates, an intermediate step in phosphorus regeneration. Appl. Environ. Microbiol. 58:3744–3750.PubMedGoogle Scholar
  324. 324.
    Turley, C. M. 1993. The effect of pressure on leucine and thymidine incorporation by free-living bacteria and by bacteria attached to sinking oceanic particles. Deep-Sea Res. 40:2193–2206.CrossRefGoogle Scholar
  325. 325.
    Turley, C. M., K. Lochte, and D. J. Patterson. 1988. A barophilic flagellate isolated from 4500 m in the mid-North Atlantic. Deep-Sea Res. 35:1079–1092.CrossRefGoogle Scholar
  326. 326.
    Tuttle, J. H., C. O. Wirsen, and H. W. Jannasch. 1983. Microbial activities in the emitted hydrothermal waters of the Galapagos Rift vents. Mar. Biol. 73:293–299.CrossRefGoogle Scholar
  327. 327.
    Van Dover, C. L., J. R. Cann, C. Cavanaugh, S. Chamberlain, J. R. Delaney, D. Janecky, J. Imhoff, J. A. Tyson, and the LITE Workshop Participants. 1994. Light at deep sea hydrothermal vents. Trans. Am. Geophys. Union 75(4):44–45.CrossRefGoogle Scholar
  328. 328.
    Van Dyk, T. K., W. R. Majarian, K. B. Konstantinov, R. M. Young, P. S. Dhurjati, and R. A. LaRossa. 1994. Rapid and sensitive pollutant detection by induction of heat shock genebioluminescence gene fusions. Appl. Environ. Microbiol. 60:1414–1420.PubMedGoogle Scholar
  329. 329.
    Verati, C., P. Donato, D. Prieur, and J. Lancelot. 1999. Evidence of bacterial activity from micrometer-scale layer analyses of black-smoker sulfide structures (Pito Seamount Site, Easter microplate). Chem. Geol. 158:257–269.CrossRefGoogle Scholar
  330. 330.
    Vetriani, C., H. W. Jannasch, B. J. McGregor, D. A. Stahl, and A.-L. Reysenbach. 1999. Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl. Environ. Microbiol. 65:4375–4384.PubMedGoogle Scholar
  331. 331.
    Vetter, Y.-A., and J. W. Deming. 1994. Extracellular enzyme activity in the Arctic Northeast Water polynya. Mar. Ecol. Prog. Ser. 114:23–34.CrossRefGoogle Scholar
  332. 332.
    Vetter, Y.-A., and J. W. Deming. 1999. Growth rates of marine bacterial isolates on particulate organic substrates solubilized by freely released extracellular enzymes. Microb. Ecol. 37:86–94.PubMedCrossRefGoogle Scholar
  333. 333.
    Vetter, Y.-A., J. W. Deming, P. A. Jumars, and B. B. Krieger-Brockett. 1998. A predictive model of bacterial foraging by means of freely-released extracellular enzymes. Microb. Ecol. 36: 75–92.PubMedCrossRefGoogle Scholar
  334. 334.
    Wang, C. L., P. C. Michels, S. C. Dawson, S. Kitisakkul, J. A. Baross, J. D. Keasling, and D. S. Clark. 1997. Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl. Environ. Microbiol. 63:4075–4078.PubMedGoogle Scholar
  335. 335.
    Wang, Y., P. C. K. Lau, and D. K. Button. 1996. A marine oligobacterium harboring genes known to be part of aromatic hydrocarbon degradation pathways of soil pseudomonads. Appl. Environ. Microbiol. 62:2169–2173.PubMedGoogle Scholar
  336. 336.
    Ward, D. M., R. Weller, and M. M. Bateson. 1990. 16S rRNA sequences reveal uncultured inhabitants of a well-studied thermal community. FEMS Microbiol. Rev. 75:105–116.CrossRefGoogle Scholar
  337. 337.
    Ward, D. M., M. M. Bateson, R. Weller, and A. L. Ruff-Roberts. 1992. Ribosomal RNA analysis of microorganisms as they occur in nature. Adv. Microb. Ecol. 12:219–286.CrossRefGoogle Scholar
  338. 338.
    Weichart, D., and S. Kjelleberg. 1996. Stress resistance and recovery potential of culturable and viable nonculturable cells of Vibrio vulnificus. Microbiology 142:845–853.PubMedCrossRefGoogle Scholar
  339. 339.
    Welch, T. J., A. Farewell, F. C. Neidhardt, and D. H. Bartlett. 1993. Stress response of Escherichia coli to elevated hydrostatic pressure. J. Bacteriol. 175:7170–7177.PubMedGoogle Scholar
  340. 340.
    Wells, M. L., and E. D. Goldberg. 1991. Occurrence of small colloids in seawater. Nature 353: 342–344.CrossRefGoogle Scholar
  341. 341.
    Wells, M. L., and E. D. Goldberg. 1994. The distribution of colloids in the North Atlantic and Southern Oceans. Limnol. Oceanogr. 39:286–302.CrossRefGoogle Scholar
  342. 342.
    Wellsbury, P., K. Goodman, T. Barth, B. A. Cragg, S. P. Barnes, and R. J. Parkes. 1997. Deep marine biosphere fueled by increasing organic matter availability during burial and heating. Nature 388:573–576.CrossRefGoogle Scholar
  343. 343.
    Weyland, H., and E. Helmke. 1989. Barophilic and psychrophilic bacteria in the Antarctic Ocean, p. 43–47. In T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida (ed.), Recent Advances in Microbial Ecology. Proceedings of the 5th International Symposium on Microbial Ecology. Scientific Societies Press, Tokyo, Japan.Google Scholar
  344. 344.
    Wiebe, W. J., W. M. Sheldon, Jr., and L. R. Pomeroy. 1992. Bacterial growth in the cold: Evidence for an enhanced substrate requirement. Appl. Environ. Microbiol. 58:359–364.PubMedGoogle Scholar
  345. 345.
    Wiebe, W. J., W. M. Sheldon, Jr., and L. R. Pomeroy. 1993. Evidence for enhanced substrate requirement by marine mesophilic bacterial isolates at minimal growth temperature. Microb. Ecol. 25:151–159.CrossRefGoogle Scholar
  346. 346.
    Winn, C. D., J. P. Cowen, and D. M. Karl. 1995. Microbes in deep-sea hydrothermal plumes, p. 255–273. In D. M. Karl (ed.), Microbiology of Deep-Sea Hydrothermal Vents. CRC Press, New York, N.Y.Google Scholar
  347. 347.
    Wirsen, C. O., J. H. Tuttle, and H. W. Jannasch. 1986. Activities of sulfur-oxidizing bacteria at the 21°N East Pacific Rise vent site. Mar. Biol. 92:449–456.CrossRefGoogle Scholar
  348. 348.
    Wirsen, C. O., H. W. Jannasch, S. G. Wakeham, and E. A. Canuel. 1987. Membrane lipids of a psychrophilic and barophilic deep-sea bacterium. Current Microbiol. 14:319–322.CrossRefGoogle Scholar
  349. 349.
    Yager, P. L. 1996. The microbial fate of carbon in high-latitude seas: impact of the microbial loop on oceanic uptake of CO2. Ph.D. Thesis. University of Washington, Seattle.CrossRefGoogle Scholar
  350. 350.
    Yager, P. L., and J. W. Deming. 2000. Pelagic microbial activity in the Northeast Water Polynya: testing for temperature and substrate interactions using a kinetic approach. Limnol. Oceanogr., 44: 1882–1893.CrossRefGoogle Scholar
  351. 351.
    Yager, P. L., A. R. M. Nowell, and P. A. Jumars. 1993. Enhanced deposition to pits: a local food source for benthos. J. Mar. Res. 51:209–236.CrossRefGoogle Scholar
  352. 352.
    Yano, Y., A. Nakayama, and K. Yoshida. 1997. Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl. Environ. Microbiol. 63:2572–2577.PubMedGoogle Scholar
  353. 353.
    Yayanos, A. A. 1986. Evolutionary and ecological implications of the properties of deep-sea barophilic bacteria. Proc. Natl. Acad. Sci. USA 83:9542–9546.PubMedCrossRefGoogle Scholar
  354. 354.
    Yayanos, A. A. 1995. Microbiology to 10,500 meters in the deep sea. Annu. Rev. Microbiol. 49: 777–805.PubMedCrossRefGoogle Scholar
  355. 355.
    Yayanos, A. A., and E. F. DeLong. 1987. Deep-sea bacterial fitness to environmental temperatures and pressures, p. 17–32. In H. W. Jannasch, R. E. Marquis, and A. M. Zimmerman (ed.), Current Perspectives in High Pressure Biology. Academic Press, New York, N.Y.Google Scholar
  356. 356.
    Yayanos, A. A., and A. S. Dietz. 1982. Thermal inactivation of a deep-sea barophilic bacterium, isolate CNPT-3. Appl. Environ. Microbiol. 43:1481–1489.PubMedGoogle Scholar
  357. 357.
    Yayanos, A. A., and A. S. Dietz. 1983. Death of a hadal deep-sea bacterium after decompression. Science 220:497–498.PubMedCrossRefGoogle Scholar
  358. 358.
    Yayanos, A. A., A. S. Dietz, and R. Van Boxtel. 1979. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810.PubMedCrossRefGoogle Scholar
  359. 359.
    Yayanos, A. A., A. S. Dietz, and R. Van Boxtel. 1981. Obligately barophilic bacterium from the Mariana Trench. Proc. Natl. Acad. Sci. USA 78:5212–5215.PubMedCrossRefGoogle Scholar
  360. 360.
    Yayanos, A. A., A. S. Dietz, and R. Van Boxtel. 1982. Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl. Environ. Micobiol. 44:1356–1361.Google Scholar
  361. 361.
    Zhao, H., H. G. Wood, F. Widdel, and M. P. Bryant. 1988. An extremely thermophilic Methanococcus from a deep-sea hydrothermal vent and its plasmid. Arch. Microbiol. 150:178–183.CrossRefGoogle Scholar
  362. 362.
    Zillig, W., K. O. Stetter, D. Pringishvilli, W. Shafer, S. Wunderl, D. Janekovic, I. Holz, and P. Palm. 1982. Desulfurococcaceae, the second family of the extremely thermophilic anaerobic sulfurrespiring Thermoproteales. Zentralbl. Bakteriol. Hyg. Abt. 1 Orig. Ser. C33:304–317.Google Scholar
  363. 363.
    ZoBell, C. E., and R. Y. Morita. 1957. Barophilic bacteria in some deep-sea sediments. J. Bacteriol. 73:563–568.PubMedGoogle Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Jody W. Deming
    • 1
  • John A. Baross
    • 1
  1. 1.School of OceanographyUniversity of WashingtonSeattleUSA

Personalised recommendations