Advertisement

Abstract

The term “nonculturable” was invoked by Xu et al. in 1982 (47) to describe starved but viable cells in a survival or dormant state of existence, observed to occur after an actively growing culture of Vibrio cholerae O1 or Escherichia coli was placed in a nutrient-free microcosm, e.g., a saline solution free of nutrient and incubated at low temperature. The cells were grown in a nutrient broth under optimal conditions, harvested by centrifugation, washed, and placed in sterile artificial seawater (15‰ salinity). The cells were enumerated directly, using both acridine orange and fluorescent-antibody staining, and viewed by epifluorescent microscopy. They were also plated using media optimized for their growth. It was determined by direct microscopic observation that the total number of cells did not decrease with time. However, as incubation continued over several days, it was found that colonies no longer formed when the same samples were plated on media that had been optimized for growth of the culture. To determine whether such cells were viable or dead, a microscopic technique developed by Kogure et al. (25) was employed to examine the cultures that yielded no colonies on transfer to solid media and no growth in liquid media. The Kogure et al. (25) method, a direct-viable-count procedure, when applied to these cultures revealed that nearly all of the cells enumerated by acridine orange direct counting (AODC) were metabolically active, even though they could not be recovered on any plating medium or in broth. Hence, the phrase “viable but nonculturable” (VBNC) was coined to describe these bacteria that were apparently in a dormant state.

Keywords

Interstitial Cystitis Dormant State Vibrio Cholerae VBNC State VBNC Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allsopp, D., R. R. Colwell, and D. L. Hawksworth. 1995. Microbial Diversity and Ecosystem function. CAB International, Wallingford, U.K.Google Scholar
  2. 2.
    Barer, M. R., and C. R. Harwood. 1999. Bacterial viability and culturability. Adv. Microb. Physiol 41:93–137.PubMedCrossRefGoogle Scholar
  3. 3.
    Berlin, D. L., D. S. Herson, D. T. Hicks, and D. G. Hoover. 1999. Response of pathogenic Vibrio species to high hydrostatic pressure. Appl. Environ. Microbiol. 65:2776–2780.PubMedGoogle Scholar
  4. 4.
    Bull, A. T. 1991. Biotechnology and biodiversity, p. 203–219. In D. L. Hawksworth (ed.), The Biodiversity of Microorganisms and Invertebrates: Its Role in Sustainable Agriculture. CAB International, Wallingford, U.K.Google Scholar
  5. 5.
    Chang, H. R., L. H. Loo, K. Jeyaseelan, L. Earnest, and E. Stackebrandt. 1997. Phylogenetic relationships of Salmonella typhi and Salmonella typhimurium based on 16S rRNA sequence analysis. Int. J. Syst. Bacteriol. 47:1253–1254.PubMedCrossRefGoogle Scholar
  6. 6.
    Colwell, R. R. 1996. Microbial biodiversity—global aspects, p. 1–11. In R. R. Colwell, U. Simidu, and K. Ohwada (ed.), Microbial Diversity in Time and Space. Plenum Press, New York, N.Y.CrossRefGoogle Scholar
  7. 7.
    Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322.PubMedCrossRefGoogle Scholar
  8. 8.
    Davies, C. M., S. C. Apte, and S. M. Peterson. 1995. β-d-Galactosidase activity of viable, nonculturable coliform bacteria in marine waters. Lett. Appl. Microbiol. 21:99–102.PubMedCrossRefGoogle Scholar
  9. 9.
    DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:5685–5689.PubMedCrossRefGoogle Scholar
  10. 10.
    Domingue, G. J., G. M. Ghoniem, K. L. Bost, C. Fermin, and L. G. Human. 1995. Dormant microbes in interstitial cystitis. J. Urol. 153:1921–1926.CrossRefGoogle Scholar
  11. 11.
    Dupray, E., M. Pommepuy, A. Derrien, M. P. Caprais, and M. Cormier. 1993. Use of the direct viable count (D.V.C.) for the assessment of survival of E. coli in marine environments. Water Sci. Tech. 27:395–399.Google Scholar
  12. 12.
    Fuhrman, J. A., K. McCallum, and A. A. Davis. 1992. Novel major archaebacterial group from marine plankton. Nature (London) 356:148–149.CrossRefGoogle Scholar
  13. 13.
    Grimes, D. J. 1995. Culture collections and nonculturable cells. USFCC Newsl. 25:1–3.Google Scholar
  14. 14.
    Grimes, D. J., R. W. Atwell, P. R. Brayton, L. M. Palmer, D. M. Rollins, D. B. Roszak, F. L. Singleton, M. L. Tamplin, and R. R. Colwell. 1986. Fate of enteric pathogenic bacteria in estuarine and marine environments. Microbiol. Sci. 3:324–329.PubMedGoogle Scholar
  15. 15.
    Hänninen, M.-L., M. Häkkinen, and H. Rautelin. 1999. Stability of related human and chicken Campylobacter jejuni genotypes after passage through chick intestine studied by pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 65:2272–2275.PubMedGoogle Scholar
  16. 16.
    Hawksworth, D. L., and L. A. Mound. 1991. Biodiversity databases: the crucial significance of collections, p. 17–29. In D. L. Hawksworth (ed.), The Biodiversity of Microorganisms and Invertebrates: Its Role in Sustainable Agriculture. CAB International, Wallingford, U.K.Google Scholar
  17. 17.
    Hirsch, P., M. Bernhard, S. S. Cohen, J. C. Ensign, H. W. Jannasch, A. L. Koch, K. C. Marshall, A. Marin, J. S. Poindexter, S. C. Rittenberg, D. C. Smith, and H. Veldkamp. 1979. Life under conditions of low nutrient concentrations group report, p. 357–372. In M. Shilo (ed.), Strategies of Microbial Life in Extreme Environments. Dalem Konferenzen Life Sciences Research Report 13. Verlag Chemie, Weinheim, West Germany.Google Scholar
  18. 18.
    Holt, J. G. (ed.). 1984–1989. Bergey’s Manual of Systematic Bacteriology. The Williams & Wilkins Co., Baltimore, Md.Google Scholar
  19. 19.
    Huq, A., and R. R. Colwell. 1996. A microbiological paradox: viable but nonculturable bacteria with special reference to V. cholerae. J. Food Prot. 59:96–101.Google Scholar
  20. 20.
    Hussong, D., R. R. Colwell, M. O’Brien, E. Weiss, A. D. Pearson, R. M. Weiner, and W. D. Burge. 1987. Viable Legionella pneumophila not detectable by culture on agar media. Bio/Technology 5:947–952.CrossRefGoogle Scholar
  21. 21.
    Kaprelyants, A. S., J. C. Gottschal, and D. B. Kell. 1993. Dormancy in non-sporulating bacteria. FEMS Microbiol. Rev. 104:271–286.CrossRefGoogle Scholar
  22. 22.
    Kaprelyants, A. S., G. V. Mukamolova, and D. B. Kell. 1994. Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent culture medium at high dilution. FEMS Microbiol. Lett. 115:347–352.CrossRefGoogle Scholar
  23. 23.
    Keilin, D. 1959. The Leeuwenhoek Lecture. The problem of anabiosis or latent life; history and current concept. Proc. R. Soc. London Ser. B 150:149–191.CrossRefGoogle Scholar
  24. 24.
    Kell, D. B., H. M. Davey, G. V. Mukamolova, T. V. Votyakova, and A. S. Kaprelyants. 1995. A summary of recent work on dormancy in nonsporulating bacteria: its significance for marine microbiology and biotechnology. J. Mar. Biotechnol. 3:24–25.Google Scholar
  25. 25.
    Kogure, K., U. Simidu, and N. Taga 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415–420.PubMedCrossRefGoogle Scholar
  26. 26.
    Kolter, R., D. A. Siegele, and A. Tormo. 1993. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47:855–874.PubMedCrossRefGoogle Scholar
  27. 27.
    Kondo, K., A. Takade, and K. Amako. 1994. Morphology of the viable but nonculturable Vibrio cholerae as determined by the freeze fixation technique. FEMS Microbiol. Lett. 123:179–184.PubMedCrossRefGoogle Scholar
  28. 28.
    McDade, J. E., C. C. Shepard, D. W. Fraser, T. R. Tsai, M. A. Redus, and W. R. Dowdle. 1977. Legionnaire’s disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N. Engl. J. Med. 297:1197–1203.PubMedCrossRefGoogle Scholar
  29. 29.
    McDougald, D., S. A. Rice, D. Weichart, and S. Kjelleberg. 1998. Nonculturability: adaptation or debilitation? FEMS Microbiol. Ecol. 25:1–9.CrossRefGoogle Scholar
  30. 30.
    Morgan, J. A. W., P. A. Cranwell, and R. W. Pickup. 1991. Survival of Aeromonas salmonicida in lake water. Appl. Environ. Microbiol. 57:1777–1782.PubMedGoogle Scholar
  31. 31.
    Morita, R. Y. 1999. Feast or famine in the deep sea. J. Ind. Microbiol. Biotechnol. 22(4/5):540–550.CrossRefGoogle Scholar
  32. 32.
    Nilsson, L., J. D. Oliver, and S. Kjelleberg. 1991. Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J. Bacteriol. 173:5054–5059.PubMedGoogle Scholar
  33. 33.
    Oliver, J. D. 1993. Formation of viable but nonculturable cells, p. 239–272. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.YGoogle Scholar
  34. 34.
    Paszko-Kolva, C., M. Shahamat, and R. R. Colwell. 1993. Effect of temperature on survival of Legionella pneumophila in the aquatic environment. Microb. Releases 2:73–79.PubMedGoogle Scholar
  35. 35.
    Poindexter, J. S. 1981. The caulobacters: ubiquitous unusual bacteria. Microbiol. Rev. 45:123–179.Google Scholar
  36. 36.
    Rahman, I., M. Shahamat, M. A. R. Chowdhury, and R. R. Colwell. 1996. Potential virulence of viable nonculturable Shigella dysenteriae type I. Appl. Environ. Microbiol. 62:115–120.Google Scholar
  37. 37.
    Ravel, J., R. T. Hill, and R. R. Colwell. 1994. Isolation of a Vibrio cholerae transposon-mutant with an altered viable but nonculturable response. FEMS Microbiol. Lett. 120:57–62.PubMedCrossRefGoogle Scholar
  38. 38.
    Roszak, D. B., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365–379.PubMedGoogle Scholar
  39. 39.
    Roszak, D. B., D. J. Grimes, and R. R. Colwell. 1984. Viable but non-recoverable stage of Salmonella enteritidis in aquatic systems. Can. J. Microbiol. 30:334–338.PubMedCrossRefGoogle Scholar
  40. 40.
    Shiba, T., R. T. Hill, W. L. Straube, and R. R. Colwell. 1995. Decrease in culturability of V. cholerae caused by glucose. Appl. Environ. Microbiol. 61:2583–2588.PubMedGoogle Scholar
  41. 41.
    Tholozan, J. L., J. M. Cappelier, J. P. Tissier, G. Delattre, and M. Federighi. 1999. Physiological characterization of viable-but-nonculturable Campylobacter jejuni cells. Appl. Environ. Microbiol. 65:1110–1116.PubMedGoogle Scholar
  42. 42.
    Tiedje, J. M. 1994. Microbial diversity: of value to whom? ASM News 60:524–525.Google Scholar
  43. 43.
    Torsvik, V., J. Goksoyr, and F. L. Daae. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56:782–787.PubMedGoogle Scholar
  44. 44.
    Vives-Rego, J., R. López-Amorós, and J. Comas. 1994. Flow cytometric narrow-angle light scatter and cell size during starvation of Escherichia coli in artificial seawater. Lett. Appl. Microbiol. 19: 374–376.CrossRefGoogle Scholar
  45. 45.
    Ward, N., F. A. Rainey, B. Goebel, and E. Stackebrandt. 1995. Identifying and culturing the “unculturables”: a challenge for microbiologists, p. 89–112. In D. Allsopp, R. R. Colwell, and D. L. Hawksworth (ed.), Microbial Diversity and Ecosystem function. CAB International, Wallingford, U.K.Google Scholar
  46. 46.
    Welch, T. J., A. Farewell, F. C. Neidhardt, and D. H. Bartlett. 1993. Stress response of Escherichia coli to elevated hydrostatic pressure. J. Bacteriol. 175:7170–7177.PubMedGoogle Scholar
  47. 47.
    Xu, H.-S., N. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes, and R. R. Colwell. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8:313–323.CrossRefGoogle Scholar
  48. 48.
    Yamamoto, H., Y. Hashimoto, and T. Ezaki. 1996. Study of nonculturable Legionella pneumophila cells during multiple-nutrient starvation. FEMS Microbiol. Ecol. 20:149–154.CrossRefGoogle Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Rita R. Colwell
    • 1
  • D. Jay Grimes
    • 2
  1. 1.Center of Marine Biotechnology, Columbus CenterUniversity of Maryland Biotechnology InstituteBaltimoreUSA
  2. 2.Institute of Marine SciencesUniversity of Southern MississippiOcean SpringsUSA

Personalised recommendations