Advertisement

Turnover of Membrane Proteins in Animal Cells

  • Robert T. Schimke

Abstract

The biological concept of a continual replacement, i.e., turnover, of cellular constituents has been extensively developed in the past two decades (Schimke and Doyle, 1970) following publication of the classical studies of Schoenheimer and his associates in The Dynamic State of Body Constituents (1942).

Keywords

Membrane Protein Protein Turnover Precursor Pool Free Amino Acid Pool Free Polysome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, A. P., and Siekevitz, P., 1973, Gel electrophoresis of partially purified cytochromes P450 from liver microsomes of variously-treated rats, Biochem. Biophys. Res. Commun. 54:923.Google Scholar
  2. Arias, I. M., Doyle, D., and Schimke, R. T., 1969, Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver, J. Biol. Chem. 244:3303.PubMedGoogle Scholar
  3. Beckwith, J. R., 1967, Regulation of the lac operon, Science 156:597.PubMedGoogle Scholar
  4. Berg, D. K., and Hall, Z. W., 1974, Fate of α-bungarotoxin bound to acetylcholine receptors of normal and denervated muscle, Science, 184:473.PubMedGoogle Scholar
  5. Berlin, C. M., and Schimke, R. T., 1965, Influence of turnover rates on the response of enzymes to cortisone, Mol. Pharmacol. 1:149.PubMedGoogle Scholar
  6. Bock, K. W., Siekevitz, P., and Palade, G. E., 1971, Localization and turnover studies of membrane nicotinamide adenine dinucleotide glycohydrolase in rat liver, J. Biol. Chem. 246:188.PubMedGoogle Scholar
  7. Bond, J. S., 1971, A comparison of the proteolytic susceptibility of several rat liver enzymes, Biochem. Biophys. Res. Commun. 43:333.PubMedGoogle Scholar
  8. Bradley, M. O., Dice, J. F., Hayflick, L., and Schimke, R. T., 1974, Susceptibility of WI-38 proteins to proteolysis by exogenous proteases, submitted for publication.Google Scholar
  9. Brostrom, C. O., and Jeffay, H., 1970, Protein catabolism in rat liver homogenates: A reevaluation of the energy requirement for protein catabolism, J. Biol. Chem. 245:4001.PubMedGoogle Scholar
  10. Buchanan, D. L., 1961a, Analysis of continuous dosage isotope experiments, Arch. Biochem. Biophys. 94:489.Google Scholar
  11. Buchanan, D. L., 1961b, Total carbon turnover measured by feeding a uniformly labeled diet, Arch. Biochem. Biophys. 94:500.Google Scholar
  12. Bunn, H. F., and Jandl, J. H., 1966, Exchange of heme among hemoglobin molecules, Proc. Natl. Acad. Sci. 56:974.PubMedGoogle Scholar
  13. Campbell, P. N., and Stone, N. E., 1957, The role of serum albumin as a precursor of the soluble tissue proteins and the serum globulins of the rat bearing liver tumors, Biochem. J. 66:669.PubMedGoogle Scholar
  14. Compans, R. W., and Choppin, P. W., 1971, The structure and assembly of influenza and parainfluenza viruses, in: Comparative Virology (K. Maramorosch and F. Kurstak, eds.), p. 407, Academic Press, New York.Google Scholar
  15. Conney, A. H., 1967, Pharmacologic implications of microsomal enzyme induction, Pharmacol. Rev. 19:317.PubMedGoogle Scholar
  16. de Duve, C., and Wattiaux, R., 1966, Function of lysosomes, Ann. Rev. Physiol. 28:435.Google Scholar
  17. Dehlinger, P. J., and Schimke, R. T., 1970, Effect of size on the relative rate of degradation of rat liver soluble proteins, Biochem. Biophys. Res. Commun. 40:1473.PubMedGoogle Scholar
  18. Dehlinger, P. J., and Schimke, R. T., 1971, Size distribution of membrane proteins of rat liver and their relative rates of degradation, J. Biol. Chem. 246:2574.PubMedGoogle Scholar
  19. Dehlinger, P. J., and Schimke, R. T., 1972, Effects of phenobarbital, 3-methyl cholanthrene and hematin on synthesis of protein components of rat liver microsomal membranes, J. Biol. Chem. 247:1257.PubMedGoogle Scholar
  20. Dehlinger, P. J., and Schimke, R. T., 1973, Unpublished observations.Google Scholar
  21. Dice, J. F., and Schimke, R. T., 1973, Turnover of chromosomal proteins, Arch. Biochem. Biophys. 158:97.PubMedGoogle Scholar
  22. Dice, J. F., Dehlinger, P. J., and Schimke, R. T., 1973, Studies on the correlations between size and relative degradation rate of soluble proteins, J. Biol. Chem. 248:4220.PubMedGoogle Scholar
  23. Druyan, R., DeBarnard, B., and Rabinowitz, M., 1969, Turnover of cytochromes labeled with δ-aminolevulinic acid-3H in rat liver, J. Biol. Chem. 244:5874.PubMedGoogle Scholar
  24. Dutton, R. W., and Singer, J., 1974, Proc. Natl. Acad. Sci., in press.Google Scholar
  25. Eidam, C. R., and Merchant, D. J., 1965, The plateau phase of growth of the L-M strain mouse cell in a protein-free medium, Exp. Cell Res. 37:147.PubMedGoogle Scholar
  26. Estabrook, R. W., Franklin, M., Baron, J., Shigematsu, A., and Hildebrandt, A., 1971, Properties of the membrane-bound electron transfer complex of the hepatic endoplasmic reticulum associated with drug metabolism, in: Drugs and Cell Regulation (E. Mihich, ed.), p. 228, Academic Press, New York.Google Scholar
  27. Fambrough, D. M., and Rash, J. E., 1971, Development of acetylcholine sensitivity during myogenesis, Develop. Biol. 26:55.PubMedGoogle Scholar
  28. Fox, C. F., and Kennedy, E. P., 1965, Specific labeling and partial purification of the M protein, a component of the β-galactosidase transport system of E. coli, Proc. Natl. Acad. Sci. 54:891.PubMedGoogle Scholar
  29. Fritz, P. J., White, E. L., Vessell, E. W., and Pruitt, K. M., 1969, Proc. Natl. Acad. Sci. 62:558.PubMedGoogle Scholar
  30. Fritz, P. J., White, E. L., Vessell, E. W., and Pruitt, K. M., 1971, New theory of control of protein concentrations in animal cells, Nature New Biol. 230:119.PubMedGoogle Scholar
  31. Gan, J. C., and Jeffay, H., 1967, Origins and metabolism of the intracellular amino acid pools in rat liver and muscle, Biochim. Biophys. Acta 148:448.PubMedGoogle Scholar
  32. Ganschow, R., and Schimke, R. T., 1969, Independent genetic control of the catalytic activity and the rate of degradation of catalase in mice, J. Biol. Chem. 244:4649.PubMedGoogle Scholar
  33. Glass, R. D., and Doyle, D., 1972, On the measurement of protein turnover in animal cells, J. Biol. Chem. 247:5234.PubMedGoogle Scholar
  34. Glick, M. C., and Warren, L., 1968, Membranes of animal cells. II. The metabolism and turnover of the surface membrane, J. Cell Biol. 37:729.PubMedGoogle Scholar
  35. Goldberg, A. L., 1972, Correlation between the rates of degradation of bacterial proteins in vivo and their sensitivity to proteases, Proc. Natl. Acad. Sci. 69:422.PubMedGoogle Scholar
  36. Grisolia, S., 1964, The catalytic environment and its biological implications, Physiol. Rev. 44:657.PubMedGoogle Scholar
  37. Grob, D., Lillienthal, J. L., Jr., Harvey, A. M., and Jones, B. F., 1947, The administration if di-isopropylfluorophosphate (DFP) to man, Bull. Johns Hopkins Hosp. 81:217.Google Scholar
  38. Gurd, J. W., and Evans, W. H., 1973, Relative rates of degradation of mouse liver surface membranes, Europ. J. Biochem. 36:273.PubMedGoogle Scholar
  39. Hara, T., and Minakami, S., 1971, On functional role of cytochrome b5-NADH-linked cytochrome c reductase in microsomes, J. Biochem. (Tokyo) 69:317.PubMedGoogle Scholar
  40. Hartley, B. S., 1960, Proteolytic enzymes, Ann. Rev. Biochem. 29:45.PubMedGoogle Scholar
  41. Hatefi, Y., and Hanstein, W. G., 1970, Lipid oxidation in biological membranes. I. Lipid oxidation in submitochondrial particles and microsomes induced by chaotropic agents, Arch. Biochem. Biophys. 138:73.PubMedGoogle Scholar
  42. Hicks, S. J., Drysdale, J. W., and Munro, H. N., 1969, Preferential synthesis of ferritin and albumin by different populations of liver polysomes, Science 164:584.PubMedGoogle Scholar
  43. Higgins, M., Kawachi, T., and Rudney, H., 1971, The mechanisms of the diurnal variation of hepatic HMG-CoA reductase activity in the rat, Biochem. Biophys. Res. Commun. 45:138.PubMedGoogle Scholar
  44. Hirano, H., Parkhouse, B., Nicolson, G., Lennox, E. S., and Singer, S. J., 1972, Distribution of saccharide residues on membrane fragments from a myeloma-cell homogenate: Its implications for membrane biogenesis, Proc. Natl. Acad. Sci. 69:2945.PubMedGoogle Scholar
  45. Hirsch, C. A., and Hiatt, H. H., 1966, Turnover of liver ribosomes in fed and fasted rats, J. Biol. Chem. 241:5936.PubMedGoogle Scholar
  46. Holtzman, J. L., and Gillette, J. R., 1968, The effect of phenobarbital on the turnover of microsomal phospholipid in male and female rats, J. Biol. Chem. 243:3020.PubMedGoogle Scholar
  47. Hong, K., and Hubbell, W. L., 1972, Preparation and properties of phospholipid bilayers containing rhodopsin, Proc. Natl. Acad. Sci. 69:2617.PubMedGoogle Scholar
  48. Huang, C., Tsai, C., and Canellakis, E. S., 1973, Iodination of cell membranes. II. Characterization of HeLa cell membrane surface proteins, Biochim. Biophys. Acta 332:59.Google Scholar
  49. Hubbard, A., 1973, Fate of externally-disposed plasma membrane proteins of mouse fibroblasts following phagocytosis, J. Cell Biol. 59:304a.Google Scholar
  50. Jacobson, M. F., Asso, J., and Baltimore, D., 1970, Further evidence on the formation of poliovirus proteins, J. Mol. Biol. 49:657.PubMedGoogle Scholar
  51. Karlin, A., and Cowburn, D., 1973, The affinity-labeling of partially purified acetylcholine receptor from electric tissue of Electrophorus, Proc. Natl. Acad. Sci. 70:3636.Google Scholar
  52. Katanuma, N., 1973, Enzyme degradation and its regulation by group-specific proteases in various organs of rats, Curr. Topics Cell Regulation 7:175.Google Scholar
  53. Kawachi, T., and Rudney, H., 1970, Solubilization and purification of HMG-CoA reductase from rat liver, Biochemistry 9:1700.PubMedGoogle Scholar
  54. Kenney, F. T., 1967, Turnover of rat liver tyrosine aminotransferase: Stabilization after inhibition of protein synthesis, Science 156:525.PubMedGoogle Scholar
  55. Koch, A. L., 1962, The evaluation of the rates of biological processes from tracer kinetic data, J. Theoret. Biol. 3:283.Google Scholar
  56. Kornfield, S., and Ginsburg, V., 1966, The metabolism of glucosamine by tissue culture cells, Exp. Cell Res. 41:592.Google Scholar
  57. Kuriyama, Y., 1972, Studies on microsomal nucleoside diphosphatase of rat hepatocytes, J. Biol. Chem. 247:2979.PubMedGoogle Scholar
  58. Kuriyama, Y., Omura, T., Siekevitz, P., and Palade, G. E., 1969, Effects of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes, J. Biol. Chem. 244:2017.PubMedGoogle Scholar
  59. Kwan, S. W., and Brawerman, G., 1972, A particle associated with the polyadenylate segment in mammalian messenger RNA, Proc. Natl. Acad. Sci. 69:3247.PubMedGoogle Scholar
  60. Leskes, A., Siekevitz, P., and Palade, G. E., 1971, Differentiation of endoplasmic reticulum in hepatocytes. I. Glucose 6-phosphate distribution in situ, J. Cell Biol. 49:264.PubMedGoogle Scholar
  61. Levin, W., and Kuntzman, R., 1969, Biphasic decrease of radioactive hemoprotein from liver microsomal CO-binding particles, J. Biol. Chem. 244:3671.PubMedGoogle Scholar
  62. Litwack, G., and Rosenfield, S., 1973, Coenzyme dissociation: A possible determinant of short half-life of inducible enzymes in mammalian liver, Biochem. Biophys. Res. Commun. 52:181.PubMedGoogle Scholar
  63. Lodish, H. F., 1973, Biosynthesis of reticulocyte membrane proteins by membrane-free polyribosomes, Proc. Natl. Acad. Sci. 70:1526.PubMedGoogle Scholar
  64. Loftfield, R. B., and Harris, A., 1956, Participation of free amino acids in protein synthesis, J. Biol. Chem. 219:151.PubMedGoogle Scholar
  65. MacDonald, R. A., 1961, “Lifespan” of liver cells, Arch. Int. Med. 107:335.Google Scholar
  66. Mach, B., Faust, C., and Vassalli, P., 1973, Purification of 14S messenger RNA of immunoglobulin light chain that codes for a possible light chain precursor, Proc. Natl. Acad. Sci. 70:451.PubMedGoogle Scholar
  67. Majerus, P. W., and Kilburn, E., 1969, Acetyl CoA carboxylase: The roles of synthesis and degradation in regulation of enzyme levels in rat liver, J. Biol. Chem. 244:6254.PubMedGoogle Scholar
  68. Marver, H. S., Collins, A., Tschudy, D. P., and Rechcigl, M., Jr., 1966, δ-Aminolevulinic acid synthetase, J. Biol. Chem. 241:4323.PubMedGoogle Scholar
  69. Miller, O. L., Jr., Hamkalo, B. A., and Thomas, C. A., Jr., 1970, Visualization of bacterial genes in action, Science 169:392.PubMedGoogle Scholar
  70. Milstein, C., Brownlee, G. G., Harrison, T. R., and Matthews, M. B., 1972, A possible precursor of immunoglobin light chains, Nature New Biol. 239:117.PubMedGoogle Scholar
  71. Morrison, W. L., and Neurath, H. A., 1953, Proteolytic enzymes of the formed elements of human blood. I. Erythrocytes, J. Biol. Chem. 200:39.PubMedGoogle Scholar
  72. Negishi, M., and Omura, T., 1972, The early stage of labeling of microsomal membrane proteins in rat liver by radioactive amino acids, J. Biochem. (Tokyo) 72:1407.PubMedGoogle Scholar
  73. Neitlich, H. W., 1966, Increased plasma Cholinesterase activity and succinyl choline resistance: A genetic variant, J. Clin. Invest. 45:380.PubMedGoogle Scholar
  74. Niemeyer, H., 1966, Regulation of glucose phosphorylating enzymes, Natl. Cancer Inst. Monogr. 27:29.Google Scholar
  75. Okuda, T., Mihara, K., and Sato, R., 1972, Interactions between NADH-cytochrome breductase and cytochrome b 5 preparations, J. Biochem. (Tokyo) 72:987.PubMedGoogle Scholar
  76. Omura, T., 1974, Personal communication.Google Scholar
  77. Omura, T., and Kuriyama, Y., 1971, Role of rough and smooth microsomes in the biosynthesis of microsomal membranes, J. Biochem. (Tokyo) 69:651.PubMedGoogle Scholar
  78. Omura, T., and Sato, R., 1964, The carbon monoxide-binding pigment of liver microsomes, J. Biol. Chem. 239:2370.PubMedGoogle Scholar
  79. Omura, T., Siekevitz, P., and Palade, G. E., 1967, Turnover of constituents of the endoplasmic reticulum membrane of rat hepatocytes, J. Biol. Chem. 242:2389.PubMedGoogle Scholar
  80. Ozols, J., 1972, Cytochrome b 5 from a normal human liver: Isolation and partial amino acid sequence, J. Biol Chem. 247:2242.PubMedGoogle Scholar
  81. Palacios, R., Palmiter, R. D., and Schimke, R. T., 1972, Identification and isolation of ovalbumin-synthesizing polysomes, J. Biol. Chem. 247:2316.PubMedGoogle Scholar
  82. Palacios, R., Sullivan, D., Summers, N. M., Kiely, M. L., and Schimke, R. T., 1973, Purification of ovalbumin mRNA by specific immunoadsorption of ovalbuminsynthesizing polysomes and millipore partition of RNA, J. Biol. Chem. 248:540.PubMedGoogle Scholar
  83. Palade, G., 1959, Functional changes in structure of cell components, in: Subcellular Particles (T. Hayashi, ed.), p. 64, Ronald Press, New York.Google Scholar
  84. Penn, N. W., 1961, Metabolism of the protein molecule in a rat liver mitochondrial fraction, Biochim. Biophys. Acta 53:490.PubMedGoogle Scholar
  85. Phillips, D. R., and Morrison, M., 1971, Exposed protein on the intact human erythrocyte, Biochemistry 10:1766.PubMedGoogle Scholar
  86. Pine, M. J, 1966, Metabolic control of intracellular proteolysis in growing and resting cells, J. Bacteriol 92:847.PubMedGoogle Scholar
  87. Piatt, T., Miller, J. H., and Weber, K., 1970, In vivo degradation of mutant lac repressor, Nature (Loud.) 228:1154.Google Scholar
  88. Poole, B., 1971, The kinetics of disappearance of labeled leucine from the free leucine pool of rat liver and the effect on the apparent turnover of catalase and other hepatic proteins, J. Biol. Chem. 246:6587.PubMedGoogle Scholar
  89. Poole, B. B., Leighton, F., and de Duve, C., 1969, The synthesis and turnover of rat liver peroxisomes. II. Turnover of peroxisomal proteins, J. Cell Biol. 41:536.PubMedGoogle Scholar
  90. Price, V. E., Sterling, W. R., Tarantola, V. A., Hartley, R. W., Jr., and Rechcigl, M., Jr., 1962, The kinetics of catalase synthesis and destruction in vivo, J. Biol. Chem. 237:3468.PubMedGoogle Scholar
  91. Ragland, W. L., Shires, J. K., and Pitot, H. C., 1971, Polyribosomal attachment to rat liver and hepatoma endoplasmic reticulum in vitro, Biochem. J. 121:271.PubMedGoogle Scholar
  92. Ragnotti, G., Lawford, G. R., and Campbell, P. N., 1969, Biosynthesis of microsomal nicotinamide-adenine dinucleotide phosphate-cytochrome c reductase by membrane-bound and free polysomes from rat liver, Biochem. J. 112:139.PubMedGoogle Scholar
  93. Rechcigl, M., Jr., 1968, In vivo turnover and its role in the metabolic regulation of enzyme levels, Enzymologia 34:23.PubMedGoogle Scholar
  94. Reiner, J. M., 1953, The study of metabolic turnover rates by means of isotopic tracers, Arch. Biochem. 46:80.PubMedGoogle Scholar
  95. Righetti, P., Little, E. P., and Wolf, G., 1971, Reutilization of amino acids in protein synthesis in HeLa cells, J. Biol. Chem. 246:5724.PubMedGoogle Scholar
  96. Robinson, A. B., McKenow, J. H., and Cary, P., 1970, Controlled deamidation of peptides and proteins: An experimental hazard and a possible biological timer, Proc. Natl. Acad. Sci. 66:753.PubMedGoogle Scholar
  97. Rothfield, L., Romeo, D., and Hinckley, A., 1972, Reassembly of purified bacterial membrane components, Fed. Proc. 31:12.PubMedGoogle Scholar
  98. Russell, D., and Snyder, S. H., 1968, Amine synthesis in rapidly growing tissues: Ornithine decarboxylase activity in regenerating rat liver chick embryo, and various tumors, Proc. Natl. Acad. Sci. 60:1420.PubMedGoogle Scholar
  99. Schimke, R. T., 1964, The importance of both synthesis and degradation in control of arginase levels in rat liver, J. Biol. Chem. 239:3808.PubMedGoogle Scholar
  100. Schimke, R. T., 1967, Enzymes of arginine metabolism in cell culture: Studies on enzyme induction and repression, Natl. Cancer Inst. Monogr. 27:301.PubMedGoogle Scholar
  101. Schimke, R. T., 1970, Regulation of protein degradation in mammalian tissues, in: Mammalian Protein Metabolism (H. N. Munro, ed.), p. 177, Academic Press, New York.Google Scholar
  102. Schimke, R. T., 1975, Methods for the study of protein turnover in animal tissues, Meth. Enzymol., in press.Google Scholar
  103. Schimke, R. T., and Doyle, D., 1970, Control of enzyme levels in animal tissues, Ann. Rev. Biochem. 39:929.PubMedGoogle Scholar
  104. Schimke, R. T., Sweeney, E. W., and Berlin, C. M., 1965, The roles of synthesis and degradation in the control of rat liver tryptophan pyrrolase, J. Biol. Chem. 240:135.Google Scholar
  105. Schoenheimer, R., 1942, The Dynamic State of Body Constituents, Harvard University Press, Cambridge, Mass.Google Scholar
  106. Segal, H. L., and Kim, Y. S., 1963, Glucocorticoid stimulation of the biosynthesis of a glutamine-alanine transaminase, Proc. Natl. Acad. Sci. 50:912.PubMedGoogle Scholar
  107. Sellinger, O. Z., Lee, K. L., and Fesler, K. W., 1966, The induction of mitochondrial α-glycerophosphate dehydrogenase by thyroid hormone: Effects of adrenalectomy, thyroidectomy, and cortisone administration, Biochim. Biophys. Acta 124:289.PubMedGoogle Scholar
  108. Shambaugh, G. E., Balinsky, J. B., and Cohen, P. P., 1969, Synthesis of carbamyl phosphate synthetase in amphibian liver in vitro: The effect of thyroxine, J. Biol. Chem. 244:5295.PubMedGoogle Scholar
  109. Shapiro, D. J., and Rodwell, V. W., 1971, Regulation of hepatic 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and cholesterol synthesis, J. Biol. Chem. 246:3210.PubMedGoogle Scholar
  110. Shapiro, D., Taylor, J. M., McKnight, G. S., Palacios, R., Gonzalez, C., Kiely, M. L., and Schimke, R. T., 1974, Isolation of hen oviduct ovalbumin and rat liver albumin polysomes by indirect immunoprecipitation, J. Biol. Chem., 249:3665.PubMedGoogle Scholar
  111. Shin, B. K., and Carraway, K. L., 1973, Cell surface constituents of sarcoma 180 ascites tumor cells, Biochim. Biophys. Acta 330:254.PubMedGoogle Scholar
  112. Singer, S. J., and Nicolson, G., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.PubMedGoogle Scholar
  113. Strittmatter, P., Rogers, M. J., and Spatz, L., 1972, The binding of cytochrome b 5 to liver microsomes, J. Biol. Chem. 247:7188.PubMedGoogle Scholar
  114. Sunshine, G. H., Williams, D. J., and Rabin, B. R., 1971, Sex specific role in binding of ribosomes to endoplasmic reticulum, Nature New Biol. 230:133.PubMedGoogle Scholar
  115. Swick, R. W., 1957, Measurement of protein turnover in rat liver, J. Biol. Chem. 231:751.Google Scholar
  116. Swick, R. W., and Handa, D. T., 1956, The distribution of fixed carbon in amino acids, J. Biol. Chem. 218:577.PubMedGoogle Scholar
  117. Swick, R. W., Rexroth, A. K., and Stange, J. L., 1968, The metabolism of mitochondrial proteins. III. The dynamic state of rat liver mitochondria, J. Biol. Chem. 243:3581.PubMedGoogle Scholar
  118. Tappel, A. L., and Zalken, H., 1960, Inhibition of lipid peroxidation in microsomes by vitamin E, Nature (Lond.) 185:35.PubMedGoogle Scholar
  119. Taylor, J. M., and Schimke, R. T., 1974, Specific binding of albumin antibody to rat liver polysomes, J. Biol. Chem., 249:3597.PubMedGoogle Scholar
  120. Taylor, J. M., Dehlinger, P. J., Dice, J. F., and Schimke, R. T., 1973, Turnover of membrane proteins of animal cells, Drug Metab. Disp. 1:84.Google Scholar
  121. Tweto, J., Dehlinger, P. J., and Larrabee, A. R., 1972, Relative turnover rates of subunits of rat liver fatty acid synthetase, Biochem. Biophys. Res. Commun. 48:1371.PubMedGoogle Scholar
  122. Ussing, H. H., 1941, The rate of protein renewal in mice and rats studied by means of heavy hydrogen, Acta Physiol. Scand. 2:209.Google Scholar
  123. Williams, L. S., and Neidhardt, F. C., 1969, Synthesis and inactivation of amino acyl-transfer RNA synthetase during growth of Escherichia coli, J. Mol. Biol. 43:529.PubMedGoogle Scholar
  124. Yoshida, A., Stamatoyannopoulos, G., and Motulsky, A., 1967, Negro variant of glucose 6-phosphate dehydrogenase deficiency (A) in man, Science 155:97.PubMedGoogle Scholar
  125. Zubay, G., and Chambers, D. H., 1969, A DNA-directed cell-free system for β-galactosidase synthesis, Cold Spring Harbor Symp. Quant. Biol. 34:753.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Robert T. Schimke
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations