Use of Lectins for the Study of Membranes

  • Nathan Sharon
  • Halina Lis


For many years it has been known that plant extracts possess the ability to agglutinate erythrocytes (Bird, 1959, Boyd, 1963; Sharon and Lis, 1972). It was recognized quite early that this agglutination is the result of the specific interaction of certain proteins found in the extracts with sugars on the surface of erythrocytes (Sumner and Howell, 1936). However, the vast possibilities which these proteins, presently known as lectins, open for the study of cell surfaces and membranes in general are only now being appreciated (Sharon and Lis, 1972; Burger, 1973; Lis and Sharon, 1973). This has occurred simultaneously with the growing recognition of the important role that sugars located on the cell surface play in the life of cells (Roseman, 1970; Winzler, 1970; Ginsburg and Kobata, 1971; Ashwell and Morell, 1974). Although sugars comprise only a small proportion (2–10%) of the weight of the cellular membrane, they are believed to provide cells with recognition patterns, give them individuality, and play a decisive role in the “social life” of the cell. Any reagent which is specific for sugars on surfaces is therefore an important aid for cell biologists.


Human Erythrocyte Receptor Site Wheat Germ Agglutinin Lima Bean Hemagglutinating Activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adinolfi, M., Gardner, B., Gianelli, F., and McGuire, M., 1967, Studies on human lymphocytes stimulated in vitro with anti-gamma and anti-u antibodies, Experientia 23:271–273.PubMedCrossRefGoogle Scholar
  2. Agrawal, B. B. L., and Goldstein, I. J., 1967, Protein-carbohydrate interaction. VI. Isolation of concanavalin A by specific adsorption on cross-linked dextran gels, Biochim. Biophys. Acta 147:262–271.PubMedGoogle Scholar
  3. Agrawal, B. B. L., Goldstein, I. J., Hassing, G. S., and So, L. L., 1968, Protein-carbohydrate interaction. XVIII. The preparation and properties of acetylated concanavalin A, the hemagglutinin of the jack bean, Biochemistry 7:4211–4218.PubMedCrossRefGoogle Scholar
  4. Akedo, H., Mori, Y., Tanigaki, Y., Shinkai, K., and Morita, K., 1972, Isolation of concanavalin A binding protein(s) from rat erythrocyte stroma, Biochim. Biophys. Acta 271:378–387.PubMedGoogle Scholar
  5. Akiyama, Y., and Osawa, T., 1972, Isolation and characterization of glycoproteins possessing inhibitory activity against various phytohemmagglutinins from human group A erythrocytes, Z. Physiol. Chem. 353:323–331.CrossRefGoogle Scholar
  6. Allan, D., and Crumpton, M. J., 1971, Solubilization of pig lymphocyte plasma membrane and fractionation of some of the components, Biochem. J. 123:967–975.PubMedGoogle Scholar
  7. Allan, D., and Crumpton, M. J., 1973, Phytohemagglutinin-lymphocyte interaction: Characterization of binding sites on pig lymphocytes for 125I-labelled phytohemagglutinin, Exp. Cell Res. 78:271–278.PubMedCrossRefGoogle Scholar
  8. Allan, D., Auger, J., and Crumpton, M. J., 1971, Interaction of phytohemagglutinin with plasma membranes of pig lymphocytes and thymus cells, Exp. Cell Res. 66: 362–368.PubMedCrossRefGoogle Scholar
  9. Allan, D., Auger, J., and Crumpton, M. J., 1972, Glycoprotein receptors for concanavalin A isolated from pig lymphocyte plasma membrane by affinity chromatography in sodium deoxycholate, Nature New Biol. 236:23–25.Google Scholar
  10. Allen, A. K., and Neuberger, A., 1973, The purification and properties of the lectin from potato tubers, a hydroxyproline-containing glycoprotein, Biochem. J. 135:307–314.PubMedGoogle Scholar
  11. Allen, A. K., Neuberger, A., and Sharon, N., 1973, The purification, composition and specificity of wheat-germ agglutinin, Biochem. J. 131:155–162.PubMedGoogle Scholar
  12. Allen, J. M., Cook, G. M., and Poole, A. R., 1971, Action of conçanavalin A on the attachment stage of phagocytosis by macrophages, Exp. Cell Res. 68:466–471.PubMedCrossRefGoogle Scholar
  13. Andersson, J., Edelman, G. M., Möller, G., and Sjöberg, O., 1972a, Activation of B lymphocytes by locally concentrated concanavalin A, Europ. J. Immunol. 2:233–235.CrossRefGoogle Scholar
  14. Andersson, J., Sjöberg, O., and Möller, G., 1972b, Induction of immunoglobulin and antibody synthesis in vitro by lipopolysaccharides, Europ. J. Immunol. 2:349.CrossRefGoogle Scholar
  15. Andersson, J., Sjöberg, O., and Möller, G., 1972c, Mitogens as probes for immunocyte activation and cellular cooperation, Transpl. Rev. 11:131–177.Google Scholar
  16. Arndt-Jovin, D. J., and Berg, P., 1971, Quantitative binding of 125I-concanavalin A to normal and transformed cells, J. Virol. 8:716–721.PubMedGoogle Scholar
  17. Ashwell, G. G., and Morell, A. G., 1974, The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Advan. Enzymol. 41:99–128.Google Scholar
  18. Avrameas, S., 1969, Coupling of enzymes to proteins with glutaraldehyde: Use of the conjugates for the detection of antigens and antibodies, Immunochemistry 6:43.PubMedCrossRefGoogle Scholar
  19. Avrameas, S., and Guilbert, B., 1972, Enzyme-immunoassay for the measurement of antigens using peroxidase conjugates, Biochimie 54:837–842.PubMedCrossRefGoogle Scholar
  20. Awai, M., and Brown, E. B., 1963, Studies of the metabolism of I131-labeled human transferrin, J. Lab. Clin. Med. 61:363–396.PubMedGoogle Scholar
  21. Axén, R., Porath, J., and Ernback, S., 1967, Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides, Nature (Lond.) 214:1302–1304.PubMedCrossRefGoogle Scholar
  22. Barra, Y., de Micco, P., Lavy, M. E., and Meyer, G., 1972, Determination du nombre de sites cellulaires fixant la concanavaline A par un test de consommation, Compt. Rend. Acad. Sci. Paris 274D:966–969.Google Scholar
  23. Becht, H., Rott, R., and Klenk, H. D., 1972, Effect of concanavalin A on cells infected with enveloped RNA viruses, J. Gen. Virol. 14:1–8.PubMedCrossRefGoogle Scholar
  24. Benedetti, E. L., and Emmelot, P., 1967, Studies on plasma membranes. IV. The structural localization and content of sialic acid in plasma membranes isolated from rat liver and hepatoma, J. Cell Sci. 2:499.PubMedGoogle Scholar
  25. Berlin, R. D., 1972, Effect of concanavalin A on phagocytosis, Nature New Biol. 235: 44–45.PubMedCrossRefGoogle Scholar
  26. Berlin, R. D., and Ukena, T. E., 1972, Effect of colchicine and vinblastine on the agglutination of polymorphonuclear leucocytes by concanavalin A, Nature New Biol. 238:120.PubMedCrossRefGoogle Scholar
  27. Bernhard, W., and Avrameas, S., 1971, Ultrastructural visualization of cellular carbohydrate components by means of concanavalin A, Exp. Cell Res. 64:232–236.PubMedCrossRefGoogle Scholar
  28. Bessler, W., and Goldstein, I. J., 1973, Phytohemagglutinin purification: A general method involving affinity and gel chromatography, FEBS Letters 34:58–62.PubMedCrossRefGoogle Scholar
  29. Betel, I., and van den Berg, K. J., 1972, Interaction of concanavalin A with rat lymphocytes, Europ. J. Biochem. 30:571–578.PubMedCrossRefGoogle Scholar
  30. Beug, H., and Gerisch, G., 1973, A micromethod for routine measurement of cell agglutination and dissociation, J. Immunol. Meth. 2:49–57.CrossRefGoogle Scholar
  31. Biberfeld, P., 1971, Morphogenesis in blood lymphocytes stimulated with PHA, Acta Pathol. Microbiol. Scand. A 223: 1.Google Scholar
  32. Bird, G. W. C., 1959, Hemagglutinins in seeds, Brit. Med. Bull. 15:165.PubMedGoogle Scholar
  33. Blumenfeld, O. O., 1968, The proteins of the erythrocyte membrane obtained by solubilization with aqueous pyridine solution, Biochem. Biophys. Res. Commun. 30:200–205.PubMedCrossRefGoogle Scholar
  34. Blumenfeld, O. O., Callop, P. M., Howe, C., and Lee, L. T., 1970, Erythrocyte membrane proteins; their study using aqueous pyridine solutions, Biochim. Biophys. Acta 211:109–123.CrossRefGoogle Scholar
  35. Boak, J. L., and Mitchison, N. A., 1969, Stimulation of lymphocytes by direct exposure to antigen in vitro, Transpl. Proc. 1:539–542.Google Scholar
  36. Borberg, H., Yesner, I., Gesner, B., and Silber, R., 1968, The effect of N-acetyl-D-galactosamine and other sugars on the mitogenic activity and attachment of PHA to tonsil cells, Blood 31:747–757.PubMedGoogle Scholar
  37. Borek, C., Grob, M., and Burger, M. M., 1973, Surface alterations in transformed epithelial and fibroblastic cells in culture: A disturbance of membrane degradation versus biosynthesis? Exp. Cell Res. 77:207–215.PubMedCrossRefGoogle Scholar
  38. Bourrillon, R., Dievard, J. C., and Leseney, A. M., 1974, Solubilisation, purification et identification des sites recepteurs glycoproteiques des lectines present a la surface des cellules normales et transformes, Colloq. Int. CNRS, in press.Google Scholar
  39. Boyd, W. C., 1963, The lectins: Their present status, Vox Sang. 8:1–32.PubMedCrossRefGoogle Scholar
  40. Boyd, W. C., Bhatia, H. M., Diamond, M. A., and Matsubara, S., 1962, Quantitative study of the combination of lima bean lectin with human erythrocytes, J. Immunol. 89:463–470.PubMedGoogle Scholar
  41. Branton, D., 1966, Fracture faces of frozen membranes, Proc. Natl. Acad. Sci. 55:1048–1056.PubMedCrossRefGoogle Scholar
  42. Bretton, R., Wicker, R., and Bernhard, W., 1972, Ultrastructural localization of concanavalin A receptors in normal and SV40-transformed hamster and rat cells, Int. J. Cancer 10:397–410.PubMedCrossRefGoogle Scholar
  43. Burger, M. M., 1969, A difference in the architecture of the surface membrane of normal and virally transformed cells, Proc. Natl. Acad. Sci. 62:994–1001.PubMedCrossRefGoogle Scholar
  44. Burger, M. M., 1970, Changes in the chemical architecture of transformed cell surfaces, in: Permeability and Function of Biological Membranes (L. Bolis, A. Katchalsky, R. D. Keynes, W. R. Loewenstein, and B. A. Pethica, eds.), pp. 107–119, North-Holland, Amsterdam.Google Scholar
  45. Burger, M. M., 1971, Cell surfaces in neoplastic transformation, in: Current Topics of Cellular Regulation, Vol. 3 (B. L. Horecker and E. R. Stadtman, eds.), pp. 135–193, Academic Press, New York.Google Scholar
  46. Burger, M. M., 1973, Surface changes in transformed cells detected by lectins, Fed. Proc. 32:91–101.PubMedGoogle Scholar
  47. Burger, M. M., and Martin, G. S., 1972, Agglutination of cells transformed by Rous sarcoma virus by wheat germ agglutinin and concanavalin A, Nature New Biol. 237:3–12.Google Scholar
  48. Chase, P. S., and Miller, F., 1973, Preliminary evidence for the structure of the concanavalin A binding site on human lymphocytes that induces mitogenesis, Cell. Immunol. 6:132–139.PubMedCrossRefGoogle Scholar
  49. Clark, H. F., and Sheppard, C. C., 1963, A dialysis technique for preparing fluorescent antibody, Virology 20:642–644.PubMedCrossRefGoogle Scholar
  50. Cline, M. J., and Livingston, D. C., 1971, Binding of 3H-concanavalin A by normal and transformed cells, Nature New Biol. 232:155–156.PubMedGoogle Scholar
  51. Camoglio, P. M., and Guglielmone, R., 1972, Two dimensional distribution of concanavalin A receptor molecules on fibroblasts and lymphocyte plasma membranes, FEBS Letters 27:256–258.CrossRefGoogle Scholar
  52. Cook, G. M. W., and Eylar, E. H., 1965, Separation of the M and N blood-group antigens of the human erythrocyte, Biochim. Biophys. Acta 101:57–66.PubMedGoogle Scholar
  53. Cooper, E. H., Barkhan, P., and Hale, A. J., 1963, Observations on the proliferation of human leucocytes cultured with phytohemagglutinin, Brit. J. Haematol. 9:101–111.CrossRefGoogle Scholar
  54. Cooper, H. L., 1969, Alterations in RNA metabolism on lymphocytes during the shift from resting state to active growth, in: Biochemistry of Cell Division (R. Baserga, ed.), pp. 91–112, Thomas, Springfield, III.Google Scholar
  55. Cuatrecasas, P., 1972, Affinity chromatography and purification of the insulin receptor of liver cell membranes, Proc. Natl. Acad. Sci. 69:1277–1281.PubMedCrossRefGoogle Scholar
  56. Cuatrecasas, P., 1973, Interaction of wheat germ agglutinin and concanavalin A with isolated fat cells, Biochemistry 12:1312–1323.PubMedCrossRefGoogle Scholar
  57. Cuatrecasas, P., and Tell, G. P. E., 1973, Insulin-like activity of concanavalin A and wheat germ agglutinin—Direct interactions with insulin receptors, Proc. Natl. Acad. Sci. 70:485–489.PubMedCrossRefGoogle Scholar
  58. Curtain, C. C., and Simons, M. J., 1972, Lymphocyte mitogens of indigenous Australian plant species, Int. Arch. Allergy 42:225–235.PubMedCrossRefGoogle Scholar
  59. de Petris, S., and Raff, M. C., 1972, Distribution of immunoglobulin on the surface of mouse lymphoid cells as determined by immunoferritin electron microscopy: Antibody-induced, temperature-dependent redistribution and its implications for membrane structure, Europ. J. Immunol. 2:523–535.CrossRefGoogle Scholar
  60. de Petris, S., Raff, M. C., and Mallucci, L., 1973, Ligand-induced redistribution of concanavalin A receptors on normal, trypsinized and transformed fibroblasts, Nature New Biol. 244:275–278.PubMedCrossRefGoogle Scholar
  61. De Pierre, J. W., and Karnovsky, M. L., 1973, Plasma membranes of mammalian cells: A review of methods for their characterization and isolation, J. Cell Biol. 56:275–304.CrossRefGoogle Scholar
  62. Edelman, G. M., and Millette, C. F., 1971, Molecular probes of spermatozoan structures, Proc. Natl. Acad. Sci. 68:2436–2440.PubMedCrossRefGoogle Scholar
  63. Edelman, G. M., Yahara, I., and Wang, J. L., 1973, Receptor mobility and receptor-cytoplasmic interactions in lymphocytes, Proc. Natl. Acad. Sci. 70:1442–1446.PubMedCrossRefGoogle Scholar
  64. Fisher, D. B., and Mueller, G. C., 1968, An early alteration in the phospholipid metabolism of lymphocytes by PHA, Proc. Natl. Acad. Sci. 60:1396.PubMedCrossRefGoogle Scholar
  65. Fraenkel-Conrat, H., and Colloms, M., 1967, Reactivity of tobacco mosaic virus and its protein towards acetic anhydride, Biochemistry 6:2740–2745.PubMedCrossRefGoogle Scholar
  66. Friberg, S., Jr., Cochran, A. J., and Golub, S. H., 1971, Concanavalin A inhibits tumor cell migration, Nature New Biol. 232:121–122.PubMedGoogle Scholar
  67. Friberg, S., Jr., Golub, S. H., Lilliehöök, B., and Cochran, A. J., 1972, Assessment of concanavalin A reactivity to murine ascites tumors by inhibition of tumor cell migration, Exp. Cell Res. 73:101.PubMedCrossRefGoogle Scholar
  68. Fujita, Y., Oishi, K., and Aida, K., 1973, Sugar specificity of anti-B hemagglutinin produced by Streptomyces sp., Biochem. Biophys. Res. Commun. 53:495–501.PubMedCrossRefGoogle Scholar
  69. Fukuda, M., and Osawa, T., 1973, Isolation and characterization of a glycoprotein from human group O erythrocyte membrane, J. Biol. Chem. 248:5100–5105.PubMedGoogle Scholar
  70. Gahmberg, C. G., and Hakomori, S. J., 1973, External labeling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes, J. Biol. Chem. 248:4311–4317.PubMedGoogle Scholar
  71. Galbraith, W., and Goldstein, I. J., 1972, Phytohemagglutinin of the lima bean (Phaseolus lunatus): Isolation, characterization and interaction with type A blood-group substance, Biochemistry 11:3976–3984.PubMedCrossRefGoogle Scholar
  72. Gantt, R. R., Martin, J. R., and Evans, V. J., 1969, Agglutination of in vitro cultured neoplastic and non-neoplastic cell lines by wheat germ agglutinin, J. Natl. Cancer Inst. 42:369–372.PubMedGoogle Scholar
  73. Gery, I., Krueger, J., and Spiesel, S. Z., 1972, Stimulation of B lymphocytes by endotoxin, J. Immunol. 108:1088.PubMedGoogle Scholar
  74. Gilboa-Garber, N., 1972, Purification and properties of hemagglutinin from Pseudomonas aeruginosa and its reaction with human blood cells, Biochim. Biophys. Acta 273: 165–173.PubMedCrossRefGoogle Scholar
  75. Ginsburg, V., and Kobata, A., 1971, Structure and function of surface components of mammalian cells, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 439–457, Academic Press, New York and London.Google Scholar
  76. Glew, R. H., Kayman, S. C., and Kuhlenschmidt, M. S., 1973, Studies on the binding of concanavalin A to rat liver mitochondria, J. Biol. Chem. 218:3137–3145.Google Scholar
  77. Goldman, M., 1968, Fluorescent Antibody Methods, pp. 97–117, Academic Press, New York and London.Google Scholar
  78. Goldstein, I. J., So, L. L., Yang, Y., and Callies, Q. C., 1969, Protein-carbohydrate interaction. XIX. The interaction of concanavalin A with IgM and the glycoprotein phytohemagglutinins of the wax bean and the soybean, J. Immunol. 103:695–698.PubMedGoogle Scholar
  79. Goldstein, I. J., Reichert, C. M., Misaki, A., and Gorin, P. A. J., 1973, An “extension” of the carbohydrate binding specificity of concanavalin A, Biochim. Biophys. Acta 317:500–504.PubMedGoogle Scholar
  80. Gombos, G., Reeber, A., Zanetta, J. P., and Vincendon, G., 1974, Fractionation of nervous tissue membrane glycoproteins, Colloq. Int. CNRS, in press.Google Scholar
  81. Gonatas, N. K., and Avrameas, S., 1973, Detection of plasma membrane carbohydrates with lectin-peroxidase conjugates, J. Cell Biol. 59:436.PubMedCrossRefGoogle Scholar
  82. Gonatas, N. K., Antoine, J. C., Stieber, A., and Avrameas, S., 1972, Surface immunoglobulins of thymus and lymph node cells demonstrated by the peroxidase coupling technique, Lab. Invest. 26:253–261.PubMedGoogle Scholar
  83. Gordon, J. A., Blumberg, S., Lis, H., and Sharon, N., 1972a, Purification of soybean agglutinin by affinity chromatography on Sepharose-N-ε-aminocaproyl-β-D-galacto-pyranosylamine, FEBS Letters 24:193–196.PubMedCrossRefGoogle Scholar
  84. Gordon, J. A., Sharon, N., and Lis, H., 1972b, Binding of soybean agglutinin by normal and trypsin-treated red blood cells, Biochim. Biophys. Acta 264:387–391.PubMedCrossRefGoogle Scholar
  85. Gould, N. R., and Scheinberg, S. L., 1970, Isolation and partial characterization of two anti-A hemagglutinins from P. lunatus, Arch. Biochem. Biophys. 137:1–11.PubMedCrossRefGoogle Scholar
  86. Greaves, M. F., and Bauminger, S., 1972, Activation of T and B lymphocytes by insoluble phytomitogens, Nature New Biol. 235:67–70.PubMedGoogle Scholar
  87. Greaves, M. F., and Janossy, G., 1972, Elicitation of selective T and B lymphocyte responses by cell surface ligands, Transpl. Rev. 11:87–130.Google Scholar
  88. Greaves, M. F., Bauminger, S., and Janossy, G., 1972, Lymphocyte activation. III. Binding sites for phytomitogens on lymphocyte sub-populations, Clin. Exp. Immunol. 10:537–554.PubMedGoogle Scholar
  89. Greenwood, F. C., Hunter, H. H., and Glover, J. S., 1965, The preparation of 131I-labeled human growth hormone of high specific radioactivity, Biochem. J. 89:114–123.Google Scholar
  90. Gunther, G. R., Wang, J. L., Yahara, I., Cunningham, B. A., and Edelman, G. M., 1973, Concanavalin A derivatives with altered biological activities, Proc. Natl. Acad. Sci. 70:1012–1016.PubMedCrossRefGoogle Scholar
  91. Hamaguchi, H., and Cleve, H., 1972, Solubilization and comparative analysis of mammalian erythrocyte membrane glycoproteins, Biochem. Biophys. Res. Commun. 47:459–464.PubMedCrossRefGoogle Scholar
  92. Hammarström, S., 1973, Binding of Helix pomatia A hemagglutinin to human erythrocytes and other cells: Influence of multivalent interaction on affinity, Scand. J. Immunol. 2:53–66.PubMedCrossRefGoogle Scholar
  93. Hayman, M. J., and Crumpton, M. J., 1972, Isolation of glycoproteins from pig lymphocyte plasma membrane using Lens culinaris phytohemagglutinin, Biochem. Biophys. Res. Commun. 47:923–930.PubMedCrossRefGoogle Scholar
  94. Hayman, M. J., Shekel, J. J., and Crumpton, M. J., 1973, Purification of virus glycoproteins by affinity chromatography using Lens culinaris phytohemagglutinin, FEBS Letters 29:185–188.PubMedCrossRefGoogle Scholar
  95. Helmhamp, R. W., Goodland, R. L., Bale, W. F., Spar, I. L., and Mutschler, L. E., 1960, High specific activity iodination of γ-globulin with iodine-131 monochloride, Cancer Res. 20:1495–1500.Google Scholar
  96. Henning, R., and Uhlenbruck, G., 1973, Detection of carbohydrate structures on isolated subcellular organelles of rat liver by heterophile agglutinins, Nature New Biol. 242: 120–122.PubMedCrossRefGoogle Scholar
  97. Hirano, H., Parkhouse, B., Nicolson, G. L., Lennox, E. S., and Singer, S. J., 1972, Distribution of saccharide residues on membrane fragments from a myeloma-cell homogenate: Its implications for membrane biogenesis, Proc. Natl. Acad. Sci. 69: 2945.Google Scholar
  98. Horisberger, M., Bauer, H., and Bush, D. A., 1971, Mercury-labeled concanavalin A as a marker in electron microscopy: Localisation of mannan in yeast cell walls, FEBS Letters 18:311–314.PubMedCrossRefGoogle Scholar
  99. Howard, I. K., Sage, H. J., Stein, M. D., Young, N. M., Leon, M. A., and Dyckes, D. F., 1971, Studies on a phytohemagglutinin from the lentil. II. Multiple forms of Lens culinaris hemagglutinin, J. Biol. Chem. 246:1590–1595.PubMedGoogle Scholar
  100. Hoyer, L. W., and Trabold, N. C., 1970, The significance of erythrocyte antigen site density. I. Hemagglutination, J. Clin. Invest. 49:87–95.PubMedCrossRefGoogle Scholar
  101. Huet, C. H., and Garrido, J., 1972, Ultrastructural visualization of cell coat components by means of wheat germ agglutinin, Exp. Cell Res. 75:523.PubMedCrossRefGoogle Scholar
  102. Hunter, W. M., and Greenwood, F. C., 1962, Preparation of iodine-131 labelled human growth hormone of high specific activity, Nature (Lond.) 194:495.PubMedCrossRefGoogle Scholar
  103. Inbar, M., and Sachs, L., 1969a, Structural difference in sites on the surface membrane of normal and transformed cells, Nature (Lond.) 223:710–712.PubMedCrossRefGoogle Scholar
  104. Inbar, M., and Sachs, L., 1969b, Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells, Proc. Natl. Acad. Sci. 63:1418–1420.PubMedCrossRefGoogle Scholar
  105. Inbar, M., and Sachs, L., 1973, Mobility of carbohydrate containing sites on the surface membrane in relation to the control of cell growth, FEBS Letters 32:124–128.PubMedCrossRefGoogle Scholar
  106. Inbar, M., Ben-Bassat, H., and Sachs, L., 1971a, A specific metabolic activity on the surface membrane in malignant cell-transformation, Proc. Natl. Acad. Sci. 68: 2748–2751.PubMedCrossRefGoogle Scholar
  107. Inbar, M., Ben-Bassat, H., and Sachs, L., 1971b, Location of amino acid and carbohydrate transport sites in the surface membrane of normal and transformed mammalian cells, J. Membr. Biol. 6:195–209.CrossRefGoogle Scholar
  108. Inbar, M., Vlodavsky, I., and Sachs, L., 1972, Availability of L-fucose-like sites on the surface membrane of normal and transformed mammalian cells, Biochim. Biophys. Acta 255:703–708.PubMedCrossRefGoogle Scholar
  109. Inbar, M., Ben-Bassat, H., and Sachs, L., 1973a, Difference in the mobility of lectin sites on the surface membrane of normal lymphocytes and malignant lymphoma cells, Int. J. Cancer 12:93–99.PubMedCrossRefGoogle Scholar
  110. Inbar, M., Huet, C., Oseroff, A. R., Ben-Bassat, H., and Sachs, L., 1973b, Inhibition of lectin agglutinability by fixation of the cell surface membrane, Biochim. Biophys. Acta 311:594–599.PubMedCrossRefGoogle Scholar
  111. Isselbacher, K. J., 1972, Increased uptake of amino acids and 2-deoxy-D-glucose by virustransformed cells in culture, Proc. Natl. Acad. Sci. 69:585–589.PubMedCrossRefGoogle Scholar
  112. Jackson, R. L., Segrest, J. P., Kahane, I., and Marchesi, V. T., 1973, Studies on the major sialoglycoprotein of the human red cell membrane: Isolation and characterization of tryptic glycopeptides, Biochemistry 12:3131–3138.PubMedCrossRefGoogle Scholar
  113. Janossy, G., and Greaves, M. F., 1971, Lymphocyte activation. I. Response of T and B lymphocytes to phytomitogens, Clin. Exp. Immunol. 9:483–498.PubMedGoogle Scholar
  114. Janossy, G., and Greaves, M. F., 1972, Lymphocyte activation. II. Discriminating stimulation of lymphocyte sub-populations by phytomitogens and heterologous antilymphocyte serum, Clin. Exp. Immunol. 10:525–536.PubMedGoogle Scholar
  115. Jansons, V. K., and Burger, M. M., 1973, Isolation and characterization of agglutinin receptor sites. II. Isolation and partial purification of a surface membrane receptor for wheat germ agglutinin, Biochim. Biophys. Acta 291:127–135.PubMedCrossRefGoogle Scholar
  116. Jansons, V. K., Sakamoto, C. K., and Burger, M. M., 1973, Isolation and characterization of agglutinin receptor sites. III. Studies on the interaction with other lectins, Biochim. Biophys. Acta 291:136–143.CrossRefGoogle Scholar
  117. Kalb, A. J., and Levitzki, A., 1968, Metal-binding sites of concanavalin A and their role in the binding of α-methyl-D-glucopyranoside, Biochem. J. 109:669–672.PubMedGoogle Scholar
  118. Kalb, A. J., and Lustig, A., 1968, The molecular weight of concanavalin A, Biochim. Biophys. Acta 168:366–367.PubMedGoogle Scholar
  119. Kaneko, I., Satoh, H., and Ukita, T., 1972, Binding of radioactively labeled concanavalin A and Ricinus communis agglutinin to rat liver and rat ascites hepatoma nuclei, Biochem. Biophys. Res. Commun. 48:1504–1510.PubMedCrossRefGoogle Scholar
  120. Kaneko, I., Satoh, H., and Ukita, T., 1973, Effect of metabolic inhibitors on the agglutination of tumor cells by concanavalin A and Ricinus communis agglutinin, Biochem. Biophys. Res. Commun. 50:1087–1094.PubMedCrossRefGoogle Scholar
  121. Karlstam, B., 1973, Heterogeneity of the carbohydrate-binding ability of concanavalin A depending on the variation of heavy metal ion content, Scand. J. Immunol. 2:86.Google Scholar
  122. Karnovsky, M. J., and Unanue, E. R., 1973, Mapping and migration of lymphocyte surface macromolecules, Fed. Proc. 32:55–59.PubMedGoogle Scholar
  123. Karnovsky, M. J., Unanue, E. R., and Leventhal, M., 1972, Ligand-induced movement of lymphocyte membrane macromolecules. II. Mapping of surface moieties, J. Exp. Med. 136:907–931.PubMedCrossRefGoogle Scholar
  124. Kathan, R. H., Winzler, R. J., and Johnson, C. A., 1961, Preparation of an inhibitor of viral hemagglutination from human erythrocytes, J. Exp. Med. 113:37–45.PubMedCrossRefGoogle Scholar
  125. Kay, J. E., and Korner, A., 1966, Effect of cycloheximide on protein and ribonucleic acid synthesis in cultured human lymphocytes, Biochem. J. 100:815–822.PubMedGoogle Scholar
  126. Klein, P. A., and Adams, W. R., 1972, Location of ferritin-labeled concanavalin A binding to influenza virus and tumor cell surfaces, J. Virol. 10:844–854.PubMedGoogle Scholar
  127. Kleinschuster, S. J., and Moscona, A. A., 1972, Interactions of embryonic and fetal neural retina cells with carbohydrate-binding phytoagglutinins: Cell surface changes with differentiation, Exp. Cell Res. 70:397–410.PubMedCrossRefGoogle Scholar
  128. Kleinsmith, L. J., Allfrey, V. G., and Mirsky, A. E., 1966, Phosphorylation of nuclear protein early in the course of gene activation in lymphocytes, Science 154:780–781.PubMedCrossRefGoogle Scholar
  129. Kornfeld, S., 1969, Decreased phytohemagglutinin receptor sites in chronic lymphotic leukemia, Biochim. Biophys. Acta 192:542–545.PubMedCrossRefGoogle Scholar
  130. Kornfeld, S., 1974, Private communication.Google Scholar
  131. Kornfeld, S., and Kornfeld, R., 1969, Solubilization and partial characterization of a phytohemagglutinin receptor site from human erythrocytes, Proc. Natl. Acad. Sci. 63:1439–1446.PubMedCrossRefGoogle Scholar
  132. Kornfeld, S., and Kornfeld, R., 1970, The structure of a phytohemagglutinin receptor site from human erythrocytes, J. Biol. Chem. 245:2536–2545.PubMedGoogle Scholar
  133. Kornfeld, S., and Kornfeld, R., 1971, The structure of phytohemagglutinin receptor sites, in: Glycoproteins in Blood Cells and Plasma (G. A. Jamieson and T. J. Green-wait, eds.), pp. 50–67, Lippincott, Philadelphia and Toronto.Google Scholar
  134. Kornfeld, S., Rogers, S., and Gregory, W., 1971a, The nature of the cell surface receptor site for Lens culinaris phytohemagglutinin, J. Biol. Chem. 246:6581–6586.PubMedGoogle Scholar
  135. Kornfeld, R., Keller, J., Baenziger, J., and Kornfeld, S., 1971b, The structure of the glycopeptide of human γG myeloma proteins, J. Biol. Chem. 246:3259–3268.PubMedGoogle Scholar
  136. Kubanek, J., Entlicher, G., and Kocourek, J., 1973, Studies on phytohemagglutinins. XIII. A phytohemagglutinin receptor from human erythrocytes, Biochim. Biophys. Acta 304:93–102.PubMedCrossRefGoogle Scholar
  137. Lallier, R., 1972, Effects of concanavalin A on the development of sea urchin eggs, Exp. Cell Res. 72:157–163.PubMedCrossRefGoogle Scholar
  138. Leseney, A. M., Bourrillon, R., and Kornfeld, S., 1972, The nature of the erythrocyte receptor site for Robina pseudoacacia phytohemagglutinin, Arch. Biochem. Biophys. 153:831–836.PubMedCrossRefGoogle Scholar
  139. LeVine, D., Kaplan, M. J., and Greenaway, P. J., 1972, The purification and characterization of wheat-germ agglutinin, Biochem. J. 129:847–856.PubMedGoogle Scholar
  140. Levy, R., and Rosenberg, S. A., 1973, Protein synthesized in lymphoid cells early after activation by phytohemagglutinin, Cell. Immunol. 7:92–107.PubMedCrossRefGoogle Scholar
  141. Liener, I. E., 1955, The photometric determination of the hemagglutinating activity of soyin and crude soybean extracts, Arch. Biochem. Biophys. 54:223–231.PubMedCrossRefGoogle Scholar
  142. Lindahl-Kiessling, K., 1972, Mechanism of phytohemagglutinin (PHA) action. V. PHA compared with concanavalin A (Con A), Exp. Cell Res. 70:17.PubMedCrossRefGoogle Scholar
  143. Ling, N. R., 1968, Lymphocyte Stimulation, North-Holland, Amsterdam.Google Scholar
  144. Lis, H., and Sharon, N., 1973, The biochemistry of plant lectins (phytohemagglutinins), Ann. Rev. Biochem. 42:541–574.PubMedCrossRefGoogle Scholar
  145. Lis, H., Sela, B. A., Sachs, L., and Sharon, N., 1970, Specific inhibition by N-acetyl-D-galactosamine of the interaction between soybean agglutinin and animal cell surfaces, Biochim. Biophys. Acta 211:582–585.PubMedCrossRefGoogle Scholar
  146. Lis, H., Lotan, R., and Sharon, N., 1974, Synthesis and use of affinity chromatography columns for the purification of plant lectins, Ann. N.Y. Acad. Sci. 234:232–238.PubMedCrossRefGoogle Scholar
  147. Loor, F., 1973, Lymphocyte membrane particle redistribution induced by a mitogenic/ capping dose of the phytohemagglutinin of Phaseolus vulgaris, Europ. J. Immunol. 3:112–116.CrossRefGoogle Scholar
  148. Lotan, R., Gussin, A. E. S., Lis, H., and Sharon, N., 1973a, Purification of wheat germ agglutinin by affinity chromatography on a Sepharose-bound N-acetylglucosamine derivative, Biochem. Biophys. Res. Commun. 52:656–662.PubMedCrossRefGoogle Scholar
  149. Lotan, R., Lis, H., Rosenwasser, A., Novogrodsky, A., and Sharon, N., 1973b, Enhancement of the biological activities of soybean agglutinin by cross-linking with glutaraldehyde, Biochem. Biophys. Res. Commun. 55:1347–1355.PubMedCrossRefGoogle Scholar
  150. Lotan, R., Siegelman, H. W., Lis, H., and Sharon, N., 1974, Subunit structure of soybean agglutinin, J. Biol. Chem. 249: 1219–1224.PubMedGoogle Scholar
  151. Majerus, P. W., and Brodie, G. N., 1972, The binding of phytohemagglutinins to human platelet plasma membrane, J. Biol. Chem. 247:4253–4257.PubMedGoogle Scholar
  152. Mallucci, L., 1971, Binding of concanavalin A to normal and transformed cells as detected by immunofluorescence, Nature New Biol. 233:241.PubMedGoogle Scholar
  153. Marchalonis, J. J., 1969, An enzymic method for the trace iodination of immunoglobulins and other proteins, Biochem. J. 113:299–305.PubMedGoogle Scholar
  154. Marchesi, V. T., and Andrews, E. P., 1971, Glycoproteins: Isolation from cell membranes with lithium diiodosalicylate, Science 174:1247–1248.PubMedCrossRefGoogle Scholar
  155. Marchesi, V. T., Jackson, R. L., Segrest, J. P., and Kahane, I., 1973, Molecular features of the major glycoprotein of the human erythrocyte membrane, Fed. Proc. 32:1833–1837.PubMedGoogle Scholar
  156. Martinez-Palomo, A., Wicker, R., and Bernhard, W., 1972, Ultrastructural detection of concanavalin A surface receptors in normal and polyoma-transformed cells, Int. J. Cancer. 9:676–684.PubMedCrossRefGoogle Scholar
  157. McConahey, P. J., and Dixon, F. J., 1966, A method of trace iodination of proteins for immunologic studies, Int. Arch. Allergy 29:185–189.PubMedCrossRefGoogle Scholar
  158. McFarlane, A. S., 1958, Efficient trace-labeling of proteins with iodine, Nature (Lond.) 182:53.PubMedCrossRefGoogle Scholar
  159. Miller, I. R., and Great, H., 1972, Protein labeling by acetylation, Biopolymers 11:2533–2536.PubMedCrossRefGoogle Scholar
  160. Monroy, A., Ortolani, G., O’Dell, D., and Millonig, G., 1973, Binding of concanavalin A to the surface of unfertilized and fertilized ascidian eggs, Nature (Lond.) 242: 409–410.PubMedCrossRefGoogle Scholar
  161. Moore, E. G., and Temin, H. M., Lack of correlation between conversion by RNA tumor viruses and increased agglutinability of cells by concanavalin A and wheat germ agglutinin, Nature (Lond.) 231:117–118.Google Scholar
  162. Mueller, G. C., and LeMahieu, M., 1966, Induction of ribonucleic acid synthesis in human leucocytes by phytohemagglutinin, Biochim. Biophys. Acta 114:100–107.PubMedGoogle Scholar
  163. Nachman, R. L., Hubbard, A., and Ferris, B., 1973, Iodination of the human platelet membrane: Studies of the major surface glycoprotein, J. Biol. Chem. 248:2928–2936.PubMedGoogle Scholar
  164. Nagata, Y., and Burger, M. M., 1972, Wheat germ agglutinin: Isolation and crystallization, J. Biol. Chem. 247:2248–2250.PubMedGoogle Scholar
  165. Nicolson, G. L., 1971, Difference in the topology of normal and tumor cell membranes as shown by different distributions of ferritin-conjugated concanavalin A on their surfaces, Nature New Biol. 233:244.PubMedGoogle Scholar
  166. Nicolson, G. L., 1972, Topography of cell membrane concanavalin A-sites modified by proteolysis, Nature New Biol. 239:193–197.PubMedGoogle Scholar
  167. Nicolson, G. L., 1973a, Temperature-dependent mobility of concanavalin A sites on tumor cell surfaces, Nature New Biol. 243:218.PubMedGoogle Scholar
  168. Nicolson, G. L., 1973b, Neuraminidase “unmasking” and failure of trypsin to “unmask” β-D-galactose-like sites on erythrocyte, lymphoma, and normal and virus-transformed fibroblast cell membranes, J. Natl. Cancer Inst. 50:1443–1451.PubMedGoogle Scholar
  169. Nicolson, G. L., 1974a, Factors influencing the dynamic display of lectin-binding sites on normal and transformed cell surfaces, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), Cold Spring Harbor Laboratory, New York, pp. 251–270.Google Scholar
  170. Nicolson, G. L., 1974b, The interactions of lectins with animal cell surfaces, Int. Rev. Cytol, 39:89–190.PubMedCrossRefGoogle Scholar
  171. Nicolson, G. L., and Blaustein, J., 1972, The interaction of Ricinus communis agglutinin with normal and tumor cell surfaces, Biochim. Biophys. Acta 266:543–547.PubMedCrossRefGoogle Scholar
  172. Nicolson, G. L., and Lacorbiere, M., 1973, Cell contact-dependent increase in membrane D-galactopyranosyl-like residues on normal, but not virus-or spontaneously-transformed murine fibroblasts, Proc. Natl. Acad. Sci. 70:1672–1676.PubMedCrossRefGoogle Scholar
  173. Nicolson, G. L., and Singer, S. J., 1971, Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: Application to saccharides bound to cell membranes, Proc. Natl. Acad. Sci. 68:943–945.Google Scholar
  174. Nicolson, G. L., and Singer, S. J., 1973, The distribution and asymmetry of mammalian cell surface saccharides utilizing ferritin-conjugated plant agglutinins as specific saccharide stains, J. Cell Biol. 60:236–248.CrossRefGoogle Scholar
  175. Nicolson, G. L., and Yanagimachi, R., 1972, Terminal saccharides on sperm plasma membranes: Identification by specific agglutinins, Science 177:276–278.PubMedCrossRefGoogle Scholar
  176. Nicolson, G. L., Lacorbiere, M., and Yanagimachi, R., 1972a, Quantitative determination of plant agglutinin membrane sites on mammalian spermatozoa, Proc. Soc. Exp. Biol. Med. 141:661–663.PubMedGoogle Scholar
  177. Nicolson, G. L., Lacorbiere, M., and Delmonte, P., 1972b, Outer membrane terminal saccharides of bovine liver nuclei and mitochondria, Exp. Cell Res. 71:468–472.PubMedCrossRefGoogle Scholar
  178. Nicolson, G. L., Blaustein, J., and Etzler, M. E., 1974, Characterization of two plant lectins from Ricinus communis and their interaction with a murine lymphoma, Biochemistry 13:196–204.PubMedCrossRefGoogle Scholar
  179. Noonan, K., and Burger, M. M., 1973, Binding of [H3]-concanavalin A to normal and transformed cells, J. Biol. Chem. 248:4286–4292.PubMedGoogle Scholar
  180. Novogrodsky, A., and Katchalski, E., 1971a, Lymphocyte transformation induced by concanavalin A and its reversion by methyl-α-D-mannopyranoside, Biochim. Biophys. Acta 228:579–583.PubMedGoogle Scholar
  181. Novogrodsky, A., and Katchalski, E., 1971b, Induction of lymphocyte transformation by periodate, FEBS Letters 12:297–300.PubMedCrossRefGoogle Scholar
  182. Novogrodsky, A., and Katchalski, E., 1972, Membrane site modified on induction of the transformation of lymphocytes by periodate, Proc. Natl. Acad. Sci. 69:3207–3210.PubMedCrossRefGoogle Scholar
  183. Novogrodsky, A., and Katchalski, E., 1973a, Transformation of neuraminidase-treated lymphocytes by soybean agglutinin, Proc. Natl. Acad. Sci. 70:2515–2518.PubMedCrossRefGoogle Scholar
  184. Novogrodsky, A., and Katchalski, E., 1973b, Induction of lymphocyte transformation by sequential treatment with neuraminidase and galactose oxidase, Proc. Natl. Acad. Sci. 70:1824–1827.PubMedCrossRefGoogle Scholar
  185. Novogrodsky, A., Biniaminov, M., Ramot, B., and Katchalski, E., 1972, Binding of concanavalin A to rat, normal human and chronic lymphatic leukemia lymphocytes, Blood 40:311–316.PubMedGoogle Scholar
  186. Nowell, P. C., 1960, Phytohemagglutinin: An initiator of mitosis in cultures of normal human leukocytes, Cancer Res. 20:462–466.PubMedGoogle Scholar
  187. Oikawa, T., Yanagimachi, R., and Nicolson, G. L., 1973, Wheat germ agglutinin blocks mammalian fertilization, Nature (Lond.) 241:256–259.PubMedCrossRefGoogle Scholar
  188. Oikawa, T., Nicolson, G. L., and Yanagimachi, R., Inhibition of hamster fertilization by phytohemagglutinins. Exp. Cell Res. 83:239–246.Google Scholar
  189. Olson, M. O. J., and Liener, I. E., 1967, Some physical and chemical properties of concanavalin A, the phytohemagglutinin of the jack bean, Biochemistry 6:105–111.PubMedCrossRefGoogle Scholar
  190. Oppenheimer, S. B., and Odencrantz, J., A quantitative assay for measuring cell agglutination: Agglutination of sea urchin embryo and mouse teratoma cells by concanavalin A, Exp. Cell Res. 73:475–480.Google Scholar
  191. Oram, J. D., Elwood, D. C., Appleyard, G., and Stanley, J. L., 1971, Agglutination of an arbovirus by concanavalin A, Nature New Biol. 233:50–51.PubMedGoogle Scholar
  192. Osawa, T., 1974, Affinity chromatography of carbohydrate binding proteins, Colloq. Int. CNRS, in press.Google Scholar
  193. Oseroff, A. R., Robbins, P. W., and Burger, M. M, 1973, The cell surface membrane: Biochemical aspects and biophysical probes, Ann. Rev. Biochem. 42:647–682.PubMedCrossRefGoogle Scholar
  194. Ozanne, B., and Sambrook, J., 1971, Binding of radioactively labelled concanavalin A and wheat germ agglutinin to normal and virus-transformed cells, Nature New Biol. 232:156–160.PubMedCrossRefGoogle Scholar
  195. Parker, C. W., Smith, J. W., and Steiner, A. L., 1971, Early effects of PHA on lymphocyte cyclic AMP levels, Int. Arch. Allergy 41:40.PubMedCrossRefGoogle Scholar
  196. Parmley, R. T., Martin, B. J., and Spicer, S. S., 1973, Staining of blood cell surfaces with a lectin-horseradish peroxidase method, J. Histochem. Cytochem. 21:912–922.PubMedCrossRefGoogle Scholar
  197. Peters, J. H., and Hausen, P., 1971, Effects of PHA on lymphocyte membrane transport. 2. Stimulation of “facilitated diffusion” of 3-O-methyl-glucose, Europ. J. Biochem. 19:509–513.PubMedCrossRefGoogle Scholar
  198. Phillips, D. R., and Morrison, M., 1970, The arrangement of proteins in the human erythrocyte membrane, Biochem. Biophys. Res. Commun. 40:284–289.PubMedCrossRefGoogle Scholar
  199. Pinto de Silva, P., Branton, D., and Douglas, S. A., 1971, Localization of A antigen sites on human erythrocyte ghosts, Nature (Lond.) 232:194–196.CrossRefGoogle Scholar
  200. Pogo, B. G. T., Allfrey, V. G., and Mirsky, A. E., 1966, RNA synthesis and histone acetylation during the course of gene activation in lymphocytes, Proc. Natl. Acad. Sci. 55:805.PubMedCrossRefGoogle Scholar
  201. Powell, A. E., and Leon, M. A., 1970, Reversible interaction of human lymphocytes with the mitogen concanavalin A, Exp. Cell Res. 62:315–325.PubMedCrossRefGoogle Scholar
  202. Presant, C. A., and Kornfeld, S., 1972, Characterization of the cell surface receptor for the Agaricus bisporus hemagglutinin, J. Biol. Chem. 247:6937–6945.PubMedGoogle Scholar
  203. Quastel, M. R., and Kaplan, J. G., 1970, Early stimulation of potassium uptake in lymphocytes treated with PHA, Exp. Cell Res. 63:230–233.PubMedCrossRefGoogle Scholar
  204. Raff, M. C., 1973, T and B lymphocytes and immune responses, Nature (Lond.) 242: 19–23.PubMedCrossRefGoogle Scholar
  205. Razavi, L., 1966, Cytoplasmic localisation of PHA in peripheral white cells, Nature (Lond.) 210:444–445.PubMedCrossRefGoogle Scholar
  206. Reeber, A., Zanetta, J. P., Morgan, I. G., and Gombos, G., 1974, Purification and analysis of glycopeptides derived from nervous tissue membranes, Colloq. Int. CNRS, in press.Google Scholar
  207. Reisfeld, R. A., Börjeson, J., Chessin, L. N., and Small, P. A., Jr., 1967, Isolation and characterization of a mitogen from pokeweed (Phytolacca americana), Proc. Natl. Acad. Sci. 58:2020–2027.PubMedCrossRefGoogle Scholar
  208. Rinderknecht, H., 1962, Ultra rapid fluorescent labeling of proteins, Nature (Lond.) 193:167–168.PubMedCrossRefGoogle Scholar
  209. Robbins, J. H., 1964, Tissue culture studies of the human lymphocyte, Science 146: 1648–1654.PubMedCrossRefGoogle Scholar
  210. Roos, D., and Loos, J. A., 1970, Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes, I. Stimulation by phytohemagglutinin, Biochim. Biophys. Acta 222:565–582.PubMedCrossRefGoogle Scholar
  211. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesions, Chem. Phys. Lipids 5:270–297.PubMedCrossRefGoogle Scholar
  212. Rosenblith, J. Z., Ukena, T. E., Yin, H. H., Berlin, R. D., and Karnovsky, M. J., 1973, A comparative evaluation of the distribution of concanavalin A-binding sites on the surface of normal, virally-transformed and protease-treated fibroblasts, Proc. Natl. Acad. Sci. 70:1625–1629.PubMedCrossRefGoogle Scholar
  213. Rott, R., Becht, H., Klenk, H. D., and Scholtissek, C., 1972, Interaction of concanavalin A with the membrane of influenza virus infected cells and with envelope components of the virus particle, Z. Naturforsch. 27b:227–233.Google Scholar
  214. Rowlatt, C., Wicker, R., and Bernhard, W., 1973, Ultrastructural distribution of concanavalin A receptors on hamster embryo and adenovirus tumor cell cultures, Int. J. Cancer. 11:314–326.PubMedCrossRefGoogle Scholar
  215. Sällström, J. F., and Alm, G. V., 1972, Binding of concanavalin A to thymic and bursal chicken lymphoid cells, Exp. Cell Res. 75:63–72.PubMedCrossRefGoogle Scholar
  216. Scatchard, G., 1949, The attraction of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 51:660–672.CrossRefGoogle Scholar
  217. Schumann, G., Schnebli, H. P., and Dukor, P., 1973, Selective stimulation of mouse lymphocyte populations by lectins, Int. Arch. Allergy 45:331–340.PubMedCrossRefGoogle Scholar
  218. Segrest, J. P., Kahane, I., Jackson, R. L., and Marchesi, V. T., 1973, Major glycoprotein of the human erythrocyte membrane: Evidence for an amphipathic molecular structure, Arch. Biochem. Biophys. 155:167–183.PubMedCrossRefGoogle Scholar
  219. Sela, B. A., Lis, H., Sharon, N., and Sachs, L., 1970, Different locations of carbohydrate-containing sites in the surface membrane of normal and transformed mammalian cells, J. Membr. Biol. 3:267–279.CrossRefGoogle Scholar
  220. Sela, B. A., Lis, H., Sharon, N., and Sachs, L., 1971, Quantitation of N-acetyl-D-galac-tosamine-like sites on the surface membrane of normal and transformed mammalian cells, Biochim. Biophys. Acta 249:564–568.PubMedCrossRefGoogle Scholar
  221. Sela, B. A., Lis, H., Sharon, N., and Sachs, L., 1973, Isolectins from wax bean with differential agglutination of normal and transformed mammalian cells, Biochim. Biophys. Acta 310:273–277.PubMedGoogle Scholar
  222. Sharon, N., and Lis, H., 1972, Lectins: Cell agglutinating and sugar-specific proteins, Science 177:949–959.PubMedCrossRefGoogle Scholar
  223. Sharon, N., Lis, H., and Lotan, R., 1974, On the structural diversity of lectins, Colloq. Int. CNRS, in press.Google Scholar
  224. Shoham, J., and Sachs, L., 1972, Differences in the binding of fluorescent concanavalin A to the surface membrane of normal and transformed cells, Proc. Natl. Acad. Sci. 69: 2479.PubMedCrossRefGoogle Scholar
  225. Singer, S. J., 1971, The molecular organization of biological membranes, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), p. 145, Academic Press, New York.Google Scholar
  226. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.PubMedCrossRefGoogle Scholar
  227. Smith, C. W., and Hollers, J. C., 1970, The pattern of binding of fluorescein-labeled concanavalin A to the motile lymphocyte, J. Reticuloendothel. Soc. 8:458–464.PubMedGoogle Scholar
  228. Smith, D. F., Neri, G., and Walborg, E. F., Jr., 1973, Isolation and partial characterization of cell-surface glycopeptides from AS-30D rat hepatoma which possesses binding sites for wheat germ agglutinin and concanavalin A, Biochemistry 12:2111–2118.PubMedCrossRefGoogle Scholar
  229. Smith, J. W., Steiner, A. L., Newberry, W. M., Jr., and Parker, C. W., 1971, Cyclic adenosine 3′,5′-monophosphate in human lymphocytes: Alterations after phytohemagglutinin stimulation, J. Clin. Invest. 50:432–441.PubMedCrossRefGoogle Scholar
  230. Smith, S. B., and Revel, J. P., 1972, Mapping of concanavalin A binding sites on the surface of several cell types, Develop. Biol. 27:434–441.PubMedCrossRefGoogle Scholar
  231. Spiro, R. G., 1970, Glycoproteins, Ann. Rev. Biochem. 39:599–638.PubMedCrossRefGoogle Scholar
  232. Steck, T. L., 1972, Selective solubilization of red blood cell membrane proteins with guanidine hydrochloride, Biochim. Biophys. Acta 255:553–556.PubMedCrossRefGoogle Scholar
  233. Steck, T. L., and Wallach, D. F. H., 1965, The binding of kidney-bean phytohemagglutinin by Ehrlich ascites carcinoma, Biochim. Biophys. Acta 97:510–522.PubMedCrossRefGoogle Scholar
  234. Steck, T. L., and Wallach, D. F. H., 1970, The isolation of plasma membranes, Meth. Cancer Res. 5:93–153.Google Scholar
  235. Stein, M. D., Sage, H. J., and Leon, M. A., 1972, Studies on a phytohemagglutinin from lentil. V. Binding of Lens culinaris hemagglutinin to lymphocytes and erythrocytes, Arch. Biophys. Biochem. 150:412–420.CrossRefGoogle Scholar
  236. Steinemann, A., and Stryer, L., 1973, Accessibility of the carbohydrate moiety of rhodopsin, Biochemistry 12:1499–1502.PubMedCrossRefGoogle Scholar
  237. Stewart, M. L., Summers, D. F., Soeiro, R., Fields, B. N., and Maizel, J. V., Jr., 1973, Purification of oncornaviruses by agglutination with concanavalin A, Proc. Natl. Acad. Sci. 70:1308–1312.PubMedCrossRefGoogle Scholar
  238. Stobo, J. D., Rosenthal, A. S., and Paul, W. E., 1972, Functional heterogeneity of murine lymphoid cells. I. Responsiveness to and surface binding of concanavalin A and phytohemagglutinin, J. Immunol. 108:1.PubMedGoogle Scholar
  239. Sumner, J. B., and Howell, S. F., 1936, The identification of the hemagglutinin of the jack bean with concanavalin A, J. Bacteriol. 32:227.PubMedGoogle Scholar
  240. Susz, J. P., Hof, H. L, and Brunngraber, E. G., 1973, Isolation of concanavalin A-binding glycoproteins from rat brain, FEBS Letters 32:289–292.PubMedCrossRefGoogle Scholar
  241. Taranta, A., Cupari, G., and Quagliata, F., 1968, High lymphocytes transformation with non-haemolytic streptococcal product, Nature (Lond.) 219:757–758.PubMedCrossRefGoogle Scholar
  242. Taylor, R., Duffus, P., Raff, M., and de Petris, S., 1971, Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by anti-immunoglobulin antibody, Nature New Biol. 233:225–229.PubMedCrossRefGoogle Scholar
  243. Tichá, M., Entlicher, G., Koštíř, J. V., and Kocourek, J., 1970, Studies on phytohemagglutinins. IV. Isolation and characterization of a hemagglutinin from the lentil, Lens esculenta, Moench, Biochim. Biophys. Acta 221:282–289.PubMedGoogle Scholar
  244. Tillack, T. W., and Marchesi, V. T., 1970, Demonstration of the outer surface of freezeetched red blood cell membranes, J. Cell Biol. 45:649–653.PubMedCrossRefGoogle Scholar
  245. Tillack, T. W., Scott, R. E., and Marchesi, V. T., 1972, The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytoemag-glutinin and influenza virus to the intramembraneous particles, J. Exp. Med. 135: 1209–1227.PubMedCrossRefGoogle Scholar
  246. Tkacz, J. S., Cybulska, E. B., and Lampen, J. O., 1971, Specific staining of wall mannan in yeast cells with fluorescein-conjugated concanavalin A, J. Bacteriol. 105:1–5.PubMedGoogle Scholar
  247. Tomita, T., Kurokawa, T., Onozaki, K., Ichiki, N., Osawa, T., and Ukita, T., 1972, Purification of galactose-binding phytoagglutinins and Phytotoxin by affinity column chromatography using Sepharose, Experientia 28:84–85.PubMedCrossRefGoogle Scholar
  248. Torpier, G., and Montagnier, L., 1973, Studies of the ultrastructure of concanavalin A receptor sites at the surface of normal cells and cells transformed by oncogenic viruses, Int. J. Cancer 11:604–615.PubMedCrossRefGoogle Scholar
  249. Toyoshima, S., Osawa, T., and Tonomura, A., 1970, Some properties of purified phytohemagglutinin from Lens culinaris seeds, Biochim. Biophys. Acta 221:514–521.PubMedGoogle Scholar
  250. Toyoshima, S., Akiyama, Y., Nakano, K., Tonomura, A., and Osawa, T., 1971, A phytomitogen from Wistaria floribunda seeds and its interaction with human peripheral lymphocytes, Biochemistry 10:4457–4463.PubMedCrossRefGoogle Scholar
  251. Toyoshima, S., Fukuda, M., and Osawa, T., 1972, Chemical nature of the receptor site for various phytomitogens, Biochemistry 11:4000–4005.PubMedCrossRefGoogle Scholar
  252. Trowbridge, I. S., 1973, Mitogenic properties of pea lectin and its chemical derivatives, Proc. Natl. Acad. Sci. 70:3650–3654.PubMedCrossRefGoogle Scholar
  253. Tyler, R. W., Everett, N. B., and Schwarz, M. R., 1969, Effect of antilymphocytic serum on rat lymphocytes, J. Immunol. 102:179–186.PubMedGoogle Scholar
  254. Uchida, T., and Matsumoto, T., 1972, Heterogeneity of commercially available concanavalin A with respect to carbohydrate-binding ability, Biochim. Biophys. Acta 257:230–234.PubMedGoogle Scholar
  255. Uhlenbruck, G., and Herrmann, W. P., 1972, Agglutination of normal, coated and enzyme-treated human spermatozoa with heterophile agglutinins, Vox Sang. 23: 444–451.PubMedCrossRefGoogle Scholar
  256. Unanue, E. R., Perkins, W. D., and Karnovsky, M. J., 1972, Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radioautography, J. Exp. Med. 136:885–906.PubMedCrossRefGoogle Scholar
  257. van den Berg, K. J., and Betel, I., 1971, Early increase of amino acid transport in stimulated lymphocytes, Exp. Cell Res. 66:257.PubMedCrossRefGoogle Scholar
  258. Watkins, W. M., and Morgan, W. T. J., 1952, Neutralization of the anti-H agglutinin in eel serum by simple sugars, Nature (Lond.) 169:825–826.PubMedCrossRefGoogle Scholar
  259. Weber, T., 1973, Kinetics of the reaction of kidney-bean leucoagglutinin with human lymphocytes, Experientia 29:863–865.PubMedCrossRefGoogle Scholar
  260. Weber, T. H., Lindahl-Kiessling, K., Mattsson, A., and Alm, G. V., 1972, Autoradiographic studies of lymphocytes stimulated in vitro with tritium labeled kidney bean leucoagglutinin, Life Sci. 11:343–350.CrossRefGoogle Scholar
  261. Williams, M. A., and Voak, D., 1972, Studies with ferritin-labelled Dolichos biflorus lectin on the number and distribution of A sites on A1 and A2 erythrocytes, and on the nature of its specificity and enhancement by enzymes, Br. J. Haematol. 23:427–441.PubMedCrossRefGoogle Scholar
  262. Winzler, R. J., 1970, Carbohydrates in cell surfaces, Int. Rev. Cytol 29:77–125.PubMedCrossRefGoogle Scholar
  263. Winzler, R. J., Harris, E. D., Pekas, D. J., Johnson, C. A., and Weber, P., 1967, Studies on glycopeptides released by trypsin from intact human erythrocytes, Biochemistry 6:2195–2202.PubMedCrossRefGoogle Scholar
  264. Wray, V. P., and Walborg, E. F., Jr., 1971, Isolation of tumor cell surface binding sites for concanavalin A and wheat germ agglutinin, Cancer Res. 31:2072–2079.PubMedGoogle Scholar
  265. Yahara, I., and Edelman, G. M., 1972, Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A, Proc. Natl. Acad. Sci. 69:608–612.PubMedCrossRefGoogle Scholar
  266. Yahara, I., and Edelman, G. M., 1973a, The effects of concanavalin A on the mobility of lymphocyte surface receptors, Exp. Cell Res. 81:143–155.PubMedCrossRefGoogle Scholar
  267. Yahara, I., and Edelman, G. M., 1973b, Modulation of lymphocyte receptor distribution by concanavalin A, antimitotic agents and alterations of pH, Nature (Lond.) 246: 152–155.PubMedCrossRefGoogle Scholar
  268. Yin, H. H., Ukena, T. E., and Berlin, R. D., 1972, Effect of colchicine, colcemid and vinblastine on the agglutination by concanavalin A of transformed cells, Science 178:867–868.PubMedCrossRefGoogle Scholar
  269. Young, N. M., Leon, M. A., Takahashi, T., Howard, I. K., and Sage, H. J., 1971, Studies on a phytohemagglutinin from the lentil. III. Reaction of Lens culinaris hemagglutinin with polysaccharides, glycoproteins and lymphocytes, J. Biol. Chem. 246:1596–1601.PubMedGoogle Scholar
  270. Zatz, M. M., Goldstein, A. L., Blumenfeld, O. O., and White, A., 1972, Regulation of normal and leukaemic lymphocyte transformation and recirculation by sodium periodate oxidation and sodium borohydride reduction, Nature New Biol. 240: 252–255.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Nathan Sharon
    • 1
  • Halina Lis
    • 1
  1. 1.Department of BiophysicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations