Advertisement

The Genome of the Group B Coxsackieviruses

  • Steven Tracy
Part of the Infectious Agents and Pathogenesis book series (IAPA)

Abstract

The six serotypes of the coxsackievirus B group (CVB1–6) and the 23 serotypes of the coxsackievirus A group (CVA1–23) represent a large proportion of the recognized enteroviruses. Recent interest in the molecular biology of the CVB group reflects the growing realization that the CVBs probably are involved in important human diseases such as myocarditis1 and have been implicated as putative causative agents in a variety of other diseases, such as diabetes mellitus,2,3 birth defects of the heart,4 and hydroencephalopathy.5 This chapter presents aspects of the CVB genome and the relationship of this genome to other, well-characterized enteroviral and picornaviral genomes. This discussion bases its remarks on the genomes of CVB1, CVB3, and CVB4 as the best-characterized CVB genomes to date. For general information on the organization and molecular biology of the picornaviral and enteroviral genomes, the reader is directed to several recent reviews.6–8

Keywords

Capsid Protein Complete Nucleotide Sequence Human Rhinovirus Nontranslated Region Swine Vesicular Disease Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woodruff, J., 1980, Viral myocarditis. A Review, Am. J. Pathol. 101:425–483.PubMedGoogle Scholar
  2. 2.
    Jenson, A., and Rosenberg, H., 1984, Multiple viruses in diabetes mellitus, Prog. Med. Virol. 29:197–217.PubMedGoogle Scholar
  3. 3.
    Rayfield, E., and Seto, Y., 1978, Viruses and the pathogenesis of diabetes mellitus, Diabetes 27:1126–1140.PubMedGoogle Scholar
  4. 4.
    Brown, G., and Evans, T., 1967, Serologic evidence of coxsackievirus etiology of congenital heart disease, JAMA 199:183–187.PubMedCrossRefGoogle Scholar
  5. 5.
    Gauntt, C., Jones, D., Huntingdon, H., Arizpe, H., Gudvangen, R., and DeShambo, R., 1984, Murine forebrain anomalies induced by coxsackievirus B3 variants, J. Med. Virol. 14:341–355.PubMedCrossRefGoogle Scholar
  6. 6.
    Koch, F., and Koch, G., 1985, The Molecular Biology of Poliovirus, Springer-Verlag, New York.CrossRefGoogle Scholar
  7. 7.
    Rueckert, R., 1985, Picornaviruses and their replication, in: Fundamental Virology (B. Fields and D. Knipe, eds.), pp. 357–390, Raven, New York.Google Scholar
  8. 8.
    Palmenberg, A., 1987, Comparative organization and genome structure in picornaviruses, in: Positive Strand RNA Viruses (M. Brinton and R. Rueckert, eds.), pp. 25–34, Alan Liss, New York.Google Scholar
  9. 9.
    Stalhandkse, P., Lindberg, M., and Petterson, U., 1984, Replicase gene of coxsackievirus B3, J.Virol. 51:742–746.Google Scholar
  10. 10.
    Tracy, S., Chapman, N., and Liu, H., 1985, Molecular cloning and partial characterization of the coxsackievirus B3 genome, Arch. Virol. 85:157–163.PubMedCrossRefGoogle Scholar
  11. 11.
    Kandolf, R., and Hofschneider, P., 1986, Molecular cloning of the genome of a cardiotropic Coxsackie B3 virus: Full-length reverse transcribed recombinant cDNA generates infectious virus in mammalian cells, Proc. Natl. Acad. Sci. USA 82:4818–4822.CrossRefGoogle Scholar
  12. 12.
    Tracy, S., 1984, A comparison of genomic homologies among the coxsackievirus B group: Use of fragments of the cloned coxsackievirus B3 genome as probes, J.Gen. Virol. 65:2167–2172.PubMedCrossRefGoogle Scholar
  13. 13.
    Tracy, S., 1985, Comparison of genomic homologies in the coxsackievirus B group by use of cDNA:RNA dot-blot hybridization, J.Clin. Microbiol. 21:371–374.PubMedGoogle Scholar
  14. 14.
    Tracy, S., Liu, H., and Chapman, N., 1985, Coxsackievirus B3: Primary structure of the 5′ non-coding and capsid protein coding regions of the genome, Virus Res. 3:2663–270.CrossRefGoogle Scholar
  15. 15.
    Iizuka, N., Kuge, S., and Nomoto, A., 1987, Complete nucleotide sequence of the genome of coxsackievirus B1, J.Virol. 156:64–73.CrossRefGoogle Scholar
  16. 16.
    Jenkins, O., Booth, J., Minor, P., and Almond, J., 1987, The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the picornaviridae, J. Gen. Virol. 68:1835–1848.PubMedCrossRefGoogle Scholar
  17. 17.
    Lindberg, A., Stalhandske, P., and Petterson, U., 1987, Genome of coxsackievirus B3, Virology 156:50–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Bowles, N., Richarson, P., Olson, E., and Archard, L., 1986, Detection of coxsackie-B-virus specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy, Lancet 1:1120–1123.PubMedCrossRefGoogle Scholar
  19. 19.
    Toyoda, H., Kohara, M., Kataoka, Y., Suganuma, T., Omata, T., Imura, N., and Nomota, A., 1984, Complete nucleotide sequences of all three poliovirus serotype genomes, J.Mol. Biol. 174:561–585.PubMedCrossRefGoogle Scholar
  20. 20.
    Kitamura, N., Semler, B., Rothberg, P., Larsen, G., Adler, C., Dorner, A., Amini, E., Hanecak, R., Lee, J., van der Werf, S., Anderson, C., and Wimmer, E., 1981, Primary structure, gene organization, and polypeptide expression of poliovirus RNA, Nature (Lond.) 291:547–553.CrossRefGoogle Scholar
  21. 21.
    Stanway, G., Hughes, P., Mountford, R., Reeve, P., Minor, P., Schild, G., and Almond, J., 1984, Comparison of the complete nucleotide sequences of the genomes of the neurovirulent poliovirus P3/Leon/37 and its attenuated Sabin vaccine derivative P3/Leon/12alb, Proc. Natl. Acad. Sci. USA 81:1539–1543.PubMedCrossRefGoogle Scholar
  22. 22.
    Callahan, P., Mizutani, S., and Colonno, C., 1985, Molecular cloning and sequence determination of human rhinovirus 14 genome RNA, Proc. Natl. Acad. Sci. USA 82:732–736.PubMedCrossRefGoogle Scholar
  23. 23.
    Stanway, G., Hughes, P., Mountford, R., Minor, P., and Almond, J., 1984, The complete nucleotide sequence of a common cold virus: Human rhinovirus 14, Nucleic Acids Res. 12:7859–7875.PubMedCrossRefGoogle Scholar
  24. 24.
    Skern, T., Sommergruber, W., Blass, D., Gruendler, P., Fraundorfer, F., Pider, C., Fogy, I., and Knochler, E., 1985, Human rhinovirus 2: Complete nucleotide sequence and proteolytic processing signals in the capsid protein region, Nucleic Acids Res. 13:2111–2126.PubMedCrossRefGoogle Scholar
  25. 25.
    Rotbart, H., Levin, M., Villareal, L., Tracy, S., Semler, B., and Wimmer, E., 1985, Factors affecting the detection of enteroviruses in cerebrospinal fluid with coxsackievirus B3 and poliovirus 1 cDNA probes, J.Clin. Microbiol. 22:220–224.PubMedGoogle Scholar
  26. 26.
    Seal, L., and Jamison, R., 1984, Evidence for secondary structure within the virion RNA of echovirus 11, J. Virol. 50:641–644.PubMedGoogle Scholar
  27. 27.
    Kuge, S., and Nomoto, A., 1987, Construction of virable deletion and insertion mutants of the Sabin strain of type 1 poliovirus: Function of the 5′ noncoding sequence in viral replication, J.Virol. 61:1478–1487.PubMedGoogle Scholar
  28. 28.
    Holland, J., Spindler, K., Horodyski, F., Grabau, B., Nichol, S., and Vandepol, S., 1982, Rapid evolution of RNA genomes, Science 215:1577–1585.PubMedCrossRefGoogle Scholar
  29. 29.
    Hewlett, M., and Florkiewicz, R., 1980, Sequence of picornavirus RNAs containing a radioiodinated 5′ linked peptide reveals a conserved 5′ sequence, Proc. Natl. Acad. Sci. USA 77:303–307.PubMedCrossRefGoogle Scholar
  30. 30.
    van der Werf, S., Bradley, J., Wimmer, E., Studier, F., and Dunn, J., 1986, Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase, Proc. Natl. Acad. Sci. USA 83:2330–2334.PubMedCrossRefGoogle Scholar
  31. 31.
    Racaniello, V., and Baltimore, D., 1981, Cloned poliovirus complementary DNA is infectious in mammalian cells, Science 214:916–919.PubMedCrossRefGoogle Scholar
  32. 32.
    Semler, B., Johnson, V., and Tracy, S., 1986, A chimeric plasmid from cDNA clones of poliovirus and coxsackievirus produces a recombinant virus that is temperature-sensitive, Proc. Natl. Acad. Sci. USA 83:1777–1781.PubMedCrossRefGoogle Scholar
  33. 33.
    Rueckert, R., and Wimmer, E., 1984, Systematic nomenclature of Picornavirus proteins, J Virol. 50:957–959.PubMedGoogle Scholar
  34. 34.
    Hogle, J., Chow, M., and Filman, D., 1985, Three-dimensional structure of poliovirus at 2.9 Angstrom resolution, Science 229:1358–1365.PubMedCrossRefGoogle Scholar
  35. 35.
    Rossman, M., Arnold, E., Erickson, J., Frankenberger, E., Griffith, J., Hecht, H., Johnson, J., Kamer, G., Luo, M., Mosser, A., Ruckert, R., Sherry, B., and Vriend, G., 1985, Structure of a human cold virus and functional relationship to other picor-naviruses, Nature (Loud.) 317:145–153.CrossRefGoogle Scholar
  36. 36.
    Rossman, M., Arnold, E., Kamer, G., Kremer, M., Luo, M., Smith, T., Vriend, G., Rueckert, R., Mosser, A., Sherry, B., Boege, U., Scraba, D., McKinlay, M., and Diana, G., 1987, Structure and function of human rhinovirus 14 and mengo virus: Neutralizing antigenic sites, putative receptor binding site, neutralization by drug binding, in: Positive Strand RNA Viruses (M. Brinton and R. Rueckert, eds.), pp. 59–77, Alan R. Liss, New York.Google Scholar
  37. 37.
    Hogle, J., Chow, M., and Filman, D., 1987, The three-dimensional structure of poliovirus: Implications for assembly and immune recognition, in: Positive Strand RNA Viruses (M. Brinton and R. Rueckert, eds.), pp. 79–92, Alan R. Liss, New York.Google Scholar
  38. 38.
    Philipson, L., Beatrice, S., and Crowell, R., 1973, A structural model for picornaviruses as suggested from an analysis of urea-degraded virions and procapsids of Coxsackie B3, Virology 54:69–79.PubMedCrossRefGoogle Scholar
  39. 39.
    Parks, G., and Palmenberg, A., 1985, Hydrazine-induced in vitro cleavage of EMC VPO precursor, presented at the Fourth Meeting of the European Group of Molecular Biology of Picornaviruses, Seillac, France, (abst. B5).Google Scholar
  40. 40.
    Mapoles, J., Krah, D., and Crowell, R., 1985, Purification of a HeLa cell receptor protein for group B coxsackieviruses, J. Virol. 55:560–566.PubMedGoogle Scholar
  41. 41.
    Luo, M., Vriend, G., Karrer, G., Minor, I., Arnold, E., Rossman, M., Boege, U., Scraba, D., Duke, G., and Palmenberg, A., 1987, The atomic structure of Mengo virus at the 3.0 Angstrom Resolution. Science 235:182–191.PubMedCrossRefGoogle Scholar
  42. 42.
    Toyoda, H., Nicklin, M., Murray, M., Anderson, C., Dunn, J., Studier, F., and Wimmer, E., 1986, A second virus encoded proteinase involved in proteolytic processing of poliovirus polyprotein, Cell 45:761–770.PubMedCrossRefGoogle Scholar
  43. 43.
    Hanecak, R., Semler, B., Anderson, C., and Wimmer, E., 1982, Proteolytic processing of poliovirus polypeptides: Antibodies to polypeptide P3–7c inhibit cleavage at glutamine-glycine pairs, Proc. Natl. Acad. Sci. USA 79:3973–3977.PubMedCrossRefGoogle Scholar
  44. 44.
    Hanecak, R., Semler, B., Ariga, H., Anderson, C., and Wimmer, E., 1984, Expression of a cloned gene segment of poliovirus in E. Coli: Evidence of a cloned gene segment of poliovirus in E. coli: Evidence for autocatalytic production of the viral proteinase, Cell 37:10631073.PubMedCrossRefGoogle Scholar
  45. 45.
    Dewalt, P., and Semler, B., 1987, Site-directed mutagenesis of proteinase 3C results in a poliovirus deficient in synthesis of viral RNA polymerase, J.Virol. 61:2162–2170.Google Scholar
  46. 46.
    Young, D., Dunn, B., Tobin, G., and Flanegan, J., 1986, Anti-VPg antibody precipitation of product RNA synthesized in vitro by the poliovirus polymerase and host factor is mediated by VPg on the poliovirion RNA template, J.Virol. 58:715–723.Google Scholar
  47. 47.
    Richards, O., Hey, T., and Ehrenfeld, E., 1987, Poliovirus snapback double-stranded RNA isolated from infected HeLa cells is deficient in poly(A), J.Virol. 61:2307–2310.PubMedGoogle Scholar
  48. 48.
    Porter, G., and Fellner, P., 1978, 3’-Terminal nucleotide sequences in the genome RNA of picornaviruses, Nature (Lond.) 276:298–301.Google Scholar
  49. 49.
    Gutell, R., Noller, H., and Woese, G., 1986, Higher order structure in robosomal RNA, EMBO J. 5:1111–1113.PubMedGoogle Scholar
  50. 50.
    Evans, D., Dunn, G., Minor, P., Schild, G., Cann, A., Stanway, G., Almond, J., Currey, K., and Maizel, J., Jr., 1985, Increased neurovirulence associated with a single nucleotide change in a non-coding region of the Sabin type 3 poliovaccine genome, Nature (Lond.) 314:548–550.CrossRefGoogle Scholar
  51. 51.
    Kohara, M., Omata, T., Kameda, A., Semler, B., Itoh, H., Wimmer, E., and Nomoto, A., 1985, In vitro phenotypic markers of a poliovirus recombinant constructed from infectious cDNA clones of the neurovirulent Mahony strain and the attenuated Sabin 1 strain, J. Virol 53:782–786.Google Scholar
  52. 52.
    Omata, T., Kohara, M., Kuge, S., Komatsu, T., Abe, S., Semler, B., Kameda, A., Itoh, H., Arita, M., Wimmer, E., and Nomoto, A., 1986, Genetic analysis of the attenuation phenotype of poliovirus type 1, J. Virol. 58:348–358.PubMedGoogle Scholar
  53. 53.
    Chapman, N., Gauntt, C., and Tracy, S., 1987, Identification of Coxsackie B viruses and enteroviruses in general using nucleic acid hybridization, Eur. Heart J. (Suppl. Inflammatory Heart Disease) (in press).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Steven Tracy
    • 1
  1. 1.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations