Advertisement

Classification and General Properties

  • Brian W. J. Mahy
Part of the Infectious Agents and Pathogenesis book series (IAPA)

Abstract

The coxsackieviruses (CV) are small, icosahedral positive single-stranded RNA viruses that cause common enteric infections in human populations throughout the world. Depending on virus type and factors such as age at infection, they may cause a wide spectrum of clinical diseases, including aseptic meningitis, common colds, epidemic myalgia (Bornholm disease), myocarditis, herpangina, pharyngitis, conjunctivitis, hand-foot-and-mouth disease, and possibly some cases of juvenile diabetes mellitus. CV were originally identified because of their pathogenicity for newborn mice and hamsters and were subsequently divided into two groups, A (CVA) and B (CVB), on the basis of differences in the tissue damage induced in these animals.

Keywords

Capsid Protein Aseptic Meningitis Rectal Swab Prototype Strain Coxsackie Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dalidorf, G., and Sickles, G. M., 1948, An unidentified, filtrable agent isolated from the feces of children with paralysis, Science 108:61–62.Google Scholar
  2. 2.
    Dalldorf, G., Sickles, G. M., Plager, H., and Gifford, R., 1949, A virus recovered from the feces of ‘poliomyelitis’ patients pathogenic for suckling mice, J. Exp. Med. 89:567–582.PubMedGoogle Scholar
  3. 3.
    Melnick, J. L., Shaw, E. W., and Curnen, E. C., 1949, A virus from patients diagnosed as non-paralytic poliomyelitis or aseptic meningitis, Proc. Soc. Exp. Biol. Med. 71:344–349.PubMedGoogle Scholar
  4. 4.
    Dalldorf, G., 1949, The Coxsackie group of viruses, Science 110:594.PubMedGoogle Scholar
  5. 5.
    Sickles, G. M., and Dalldorf, G., 1949, Serologic differences among strains of the Coxsackie group of viruses, Proc. Soc. Exp. Biol. Med. 72:30–31.PubMedGoogle Scholar
  6. 6.
    Dalldorf, G., 1950, The Coxsackie viruses, Bull. NY Acad Med. 26:329–335.Google Scholar
  7. 7.
    Gifford, R., and Dalldorf, G., 1951, The morbid anatomy of experimental Coxsackie virus infection, Am. J. Pathol. 27:1047–1064.PubMedGoogle Scholar
  8. 8.
    Dalldorf, G., and Gifford, R., 1951, Clinical and epidemiologic observations of Coxsackie virus infection, N. Engl. J. Med. 244:868–873.PubMedGoogle Scholar
  9. 9.
    Melnick, J. L., 1953, The Coxsackie group of viruses, Ann. NY Acad. Sci. 56:587–595.PubMedGoogle Scholar
  10. 10.
    Sickles, G. M., Mutterer, M., Feorino, P., and Plager, H., 1955, Recently classified types of Coxsackie virus, group A. Behaviour in tissue culture, Proc. Soc. Exp. Biol. Med. 90:529–531.PubMedGoogle Scholar
  11. 11.
    Sickles, G. M., Mutterer, M., and Plager, H., 1959, New types of Coxsackie virus group A. Cytopathogenicity in tissue culture, Proc. Soc. Exp. Biol. Med. 102:742–743.PubMedGoogle Scholar
  12. 12.
    Grist, N. R., Bell, E. J., and Assaad, F., 1978, Enteroviruses in human disease, Prog. Med. Virol. 24:114–157.PubMedGoogle Scholar
  13. 13.
    Gamble, D. R., 1984, Enteroviruses: Polio-, ECHO-, and Coxsackie viruses, in: Topley and Wilson’s Principles of Bacteriology, Virology and Immunity, Vol. 4, 7th ed. (F. Brown, and G. Wilson, eds.), pp. 394–419, Arnold, London.Google Scholar
  14. 14.
    Melnick, J. L., 1950, Studies on the Coxsackie viruses: Properties, immunological aspects and distribution in nature, Bull. NY Acad. Med. 26:342–356.Google Scholar
  15. 15.
    Dalldorf, G., and Sickles, E. M., 1956, The cocksackieviruses, in: Diagnostic Procedures for Virus and Rickettsial Diseases, 2nd ed., pp. 153–168, American Public Health Association, New York.Google Scholar
  16. 16.
    Dalldorf, G., 1953, The Coxsackie virus group, Ann. NY Acad. Sci. 56:583–586.PubMedGoogle Scholar
  17. 17.
    Godenne, M. O., 1954, Premiers isolements de virus Coxsackie chez deux enfants pendant l’épidémie de myalgie epidemique à Bruxelles en 1951, Acta Paediatr. Belg. 8:29–42.PubMedGoogle Scholar
  18. 18.
    Contreras, G., Barnett, V. H., and Melnick, J. L., 1952, Identification of Coxsackie viruses by immunological methods and their classification into 16 antigenically distinct types, J. Immunol. 69:395–414.Google Scholar
  19. 19.
    Gear, J. H. S., 1952, Poliomyelitis in Southern Africa, in: Poliomyelitis, Papers and Discussions presented at the Second International Poliomyelitis Conference, pp. 437–441, Lippincott, Philadelphia.Google Scholar
  20. 20.
    Melnick, J. L., Ledinko, N., Kaplan, A. S., and Kraft, L. M., 1950, Ohio strains of a virus pathogenic for infant mice (Coxsackie group). Simultaneous occurrence with poliomyelitis virus in patients with “summer grippe,” J. Exp. Med. 91:185–195.PubMedGoogle Scholar
  21. 21.
    Melnick, J. L., and Ledinko, N., 1950, Immunological reactions of the Coxsackie viruses I. The neutralisation test: Technic and application, J. Exp. Med. 92:463–482.PubMedGoogle Scholar
  22. 22.
    Steigman, A. J., 1957, Viruses in search of disease, Ann. NY Acad. Sci. 67:249–250.Google Scholar
  23. 23.
    Hammon, W. McD., Yohn, D. S., and Pavia, R. A., 1960, Isolation and characterisation of prototype viruses ECHO-26, ECHO-27 and Coxsackie B6, Proc. Soc. Exp. Biol. Med. 103:164–168.PubMedGoogle Scholar
  24. 24.
    Kamitsuka, P. S., Lon, T. Y., Fabiyi, A., and Wenner, H. A., 1965, Preparation and standardisation of coxsackievirus reference antisera. I. For twenty-four group A viruses, Am. J. Epidemiol. 81:283–305.PubMedGoogle Scholar
  25. 25.
    Wenner, H. A., Behbehani, A. M., and Kamitsuka, P. S., 1965, Preparation and standardization of coxsackievirus reference antisera. II. For six group B viruses, Am. J. Epidemiol. 82:27–39.Google Scholar
  26. 26.
    Enders, J. F., Weller, T. H., and Robbins, F. C., 1949, Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues, Science 109:85 – 87.PubMedGoogle Scholar
  27. 27.
    Committee on the ECHO Viruses, 1955, Enteric cytopathogenic human orphan (ECHO) viruses, Science 122:1187–1188.Google Scholar
  28. 28.
    Eggers, H. J., and Sabin, A. B., 1959, Factors determining pathogenicity of variants of ECHO 9 virus for newborn mice, J.Exp. Med. 110:951–967.PubMedGoogle Scholar
  29. 29.
    Rosen, L., Melnick, J. L., Schmidt, N.J., and Wenner, H. A., 1970, Subclassification of enteroviruses and ECHO virus type 34, Arch. Ges. Virusforsch. 30:89–92.PubMedGoogle Scholar
  30. 30.
    Melnick, J. L., 1965, Echoviruses, in: Viral and Rickettsial Infections of Man, 4th ed. (F. L. Horsfall and I. Tamm, eds.), pp. 513–545, JB Lippincott, Philadelphia.Google Scholar
  31. 31.
    Melnick, J. L., Dalldorf, G., Enders, J. F., Hammon, W. McD., Sabin, A. B., Syverton, J. T., and Wenner, H. A., 1957, The enteroviruses, Am. J. Public Health 47:1556–1566.Google Scholar
  32. 32.
    Melnick, J. L., Dalldorf, G., Enders, J. F., Gelfaud, H. M., Hammon, W. McD., Huebner, R. J., Rosen, L., Sabin, A. B., Syverton, J. T., and Wenner, H. A., 1962, Classification of human enteroviruses, Virology 16:501–504.Google Scholar
  33. 33.
    Schieble, J. H., Fox, F. L., and Lennette, E. H., 1967, A probable new human Picornavirus associated with respiratory disease, Am. J. Epidemiol. 85:297–310.PubMedGoogle Scholar
  34. 34.
    Melnick, J. L., Tagaya, I., and von Magnus, H., 1974, Enteroviruses 69, 70 and 71, Intervirology 4:369–370.PubMedGoogle Scholar
  35. 35.
    Yoshi, T., 1977, Replication of enterovirus 70 in non-human primate cell cultures, J.Gen. Virol. 36:377–384.Google Scholar
  36. 36.
    Hagiwara, A., Tagaya, I., and Yoneyama, T., 1978, Common antigen between coxsackievirus A16 and enterovirus 71, Microbiolog. Immunol. 22:81–88.Google Scholar
  37. 37.
    Melnick, J. L., Schmidt, N.J., Mirkovic, R. R., Chumakov, M. P., Lavrova, I. K., and Voroshilova, M. K., 1979, Identification of Bulgarian strain 258 of enterovirus 71, Intervirology 12:297–302.Google Scholar
  38. 38.
    Hagihara, A., Tagaya, I., and Yoneyama, T., 1978, Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection, Intervirology 9:60–63.Google Scholar
  39. 39.
    Melnick, J. L., 1984, Enterovirus type 71 infections: A varied clinical pattern sometimes mimicking paralytic poliomyelitis, Rev. Infect. Dis. 6:5387–5390.Google Scholar
  40. 40.
    Melnick, J. L., 1983, Classification of human hepatitis A virus as enterovirus 72 and of hepatitis B virus as hepadnavirus type 1, Intervirology 18:105–106.Google Scholar
  41. 41.
    Melnick, J. L., Rennick, V., Hampil, B., Schmidt, N. J., and Ho, H. H., 1973, Lyophilised combination pools of enterovirus equine antisera: Preparation and test procedures for the identification of field strains of 42 enteroviruses, Bull. WHO 48:263–268.PubMedGoogle Scholar
  42. 42.
    Lim, K. A., and Benyesh-Melnick, M., 1960, Typing of viruses by combinations of antiserum pools. Application to typing of enteroviruses (Coxsackie and ECHO), J. Immunol. 84:309–317.PubMedGoogle Scholar
  43. 43.
    Schmidt, N.J., Melnick, J. L., Wenner, H. A., Ho, H. H., and Burkhard!, M. A., 1971, Evaluation of enterovirus immune horse serum pools for identification of virus field strains, Bull. WHO 45:317–330.PubMedGoogle Scholar
  44. 44.
    Nelson, D., Hiemstra, H., Minor, T., and D’Alessio, D., 1979, Non-polio enterovirus activity in Wisconsin based on a 20-year experience in a diagnostic virology laboratory, Am. J. Epidemiol. 109:352–361.PubMedGoogle Scholar
  45. 45.
    Melnick, J. L., and Wimberly, I., 1985, Lyophilised combination pools of enterovirus equine antisera: New LBM pools prepared from reserves of antisera stored frozen for two decades, Bull. WHO 63:543–550.PubMedGoogle Scholar
  46. 46.
    Kapsenberg, J. G., Ras, A., and Korte, J., 1979, Improvement of enterovirus neutralization by treatment with sodium deoxycholate or chloroform, Intervirology 12:329–334.Google Scholar
  47. 47.
    Wigand, R., and Sabin, A. B., 1962, Intratypic antigenic heterogeneity of Coxsackie B viruses, Arch. Ges. Virusforsch. 12:29–41.PubMedGoogle Scholar
  48. 48.
    Prabhakar, B. S., Haspel, M. V., McClintock, P. R., and Notkins, A. L., 1982, High frequency of antigenic variants among naturally occurring human coxsackievirus B4 virus isolates identified by monoclonal antibodies, Nature (Lond.) 300:374–376.Google Scholar
  49. 49.
    Cao, Y., Schnurr, D. P., and Schmidt, N.J., 1984, Monoclonal antibodies for study of antigenic variation in coxsackievirus type B4: Association of antigenic determinants with myocarditic properties of the virus, J.Gen. Virol. 65:925–932.PubMedGoogle Scholar
  50. 50.
    Webb, S. R., Kearse, K. P., Foulke, C. L., Hartig, P. C., and Prabhakar, B. S., 1986, Neutralisation epitope diversity of coxsackievirus B4 isolates detected by monoclonal antibodies, J.Med. Virol. 20:9–15.PubMedGoogle Scholar
  51. 51.
    O’Connor, J. R., and Morris, J. A., 1955, Recovery of Texas-1 type Coxsackie virus from the blood of a wild rabbit and from sewage contaminating rabbits’ feeding ground, Am. J. Hyg. 61:314–320.PubMedGoogle Scholar
  52. 52.
    Makower, H., and Skurska, Z., 1957, Badania rad wirusami Coxsackie Dioniesiebie III, Izolacja virus a Coxsackie 2 mozgu lisa, Arch. Immunol. Ther. 5:219–224.Google Scholar
  53. 53.
    Gregorio, S. B., Nakao, J. C., and Beran, G. W., 1972, Human enteroviruses in animals and arthropods in the central Philippines, Southeast Asian J. Trop. Med. Public Health 3:45–51.PubMedGoogle Scholar
  54. 54.
    Melnick, J. C., and Dow, R. P., 1953, Poliomyelitis in Hidalgo County, Texas, 1948. Poliomyelitis and Coxsackie viruses from flies, Am. J. Hyg. 58:288–309.PubMedGoogle Scholar
  55. 55.
    Ward, R., 1952. Poliomyelitis and Coxsackie virus from Egyptian flies, Fed. Proc. 111:486.Google Scholar
  56. 56.
    Gelfand, H. M., 1961, The occurrence in nature of the Coxsackie and ECHO viruses, Prog. Med. Virol. 3:193–244.PubMedGoogle Scholar
  57. 57.
    Lundgren, D. L., Clapper, W. E., and Sanchez, A., 1968, Isolation of human enteroviruses from Beagle dogs, Proc. Soc. Exp. Biol. Med. 128:463–467.PubMedGoogle Scholar
  58. 58.
    Lundgren, D. L., Sanchez, A., Magnuson, M. G., and Clapper, W. E., 1970, A survey for human enteroviruses in dogs and man, Arch. Ges. Virusforsch. 32:229–235.PubMedGoogle Scholar
  59. 59.
    Grew, N., Gohd, R. S., Arguedas, J., and Kato, J. I., 1970, Enteroviruses in rural families and their domestic animals, Am. J. Epidemiol. 91:518–526.PubMedGoogle Scholar
  60. 60.
    Graves, I. L., and Oppenheimer, F. R., 1975, Human viruses in animals in West Bengal: An ecological analysis, Hum. Ecol. 3:105–130.Google Scholar
  61. 61.
    Verlinde, J. D., and Versteeg, J., 1958, Coxsackie viruspneumoniae bij biggen als smetstofbron voor de meus, Tijdschr. Diergeneesk. 83:459–468.Google Scholar
  62. 62.
    McKercher, P. B., and Graves, J. H., 1981, Swine vesicular disease, in: CRC Handbook Series in Zoonoses, Section B: Viral Zoonoses, Vol. II (J-H. Steel and G. W. Beran, eds), pp. 161–167, CRC Press, Boca Raton, Florida.Google Scholar
  63. 63.
    Graves, J. H., 1973, Serological relationship of swine vesicular disease virus and Coxsackie B5 virus, Nature (London) 245:314–315.Google Scholar
  64. 64.
    Brown, F., Wild, T. F., Rowe, L. W., Underwood, B. O., and Harris, T. J. R., 1976, Comparison of swine vesicular disease virus and Coxsackie B5 virus by serological and RNA hybridization methods, J.Gen. Virol 31:231–237.PubMedGoogle Scholar
  65. 65.
    Harris, T. J. R., and Brown, F., 1975, Correlation of polypeptide composition with antigenic variation in the swine vesicular disease and Coxsackie B5 viruses, Nature (London) 258:758–760.Google Scholar
  66. 66.
    Harris, T. J. R., Doel, T. R., and Brown, F., 1977, Molecular aspects of the antigenic variation of swine vesicular disease virus and Coxsackie B5 viruses, J.Gen. Virol. 35:299–315.PubMedGoogle Scholar
  67. 67.
    Melnick, J. L., 1983, Portraits of viruses: The Picornaviruses, Intervirology 20:61–100.PubMedGoogle Scholar
  68. 68.
    Rueckert, R. R., 1985, Picornaviruses and their replication, in: Virology (B. N. Fields, ed.), pp. 705–738, Raven Press, New York.Google Scholar
  69. 69.
    Newman, J. F. E., Rowlands, D. J., and Brown, F., 1973, A physicochemical subgrouping of the mammalian picornaviruses, J.Gen. Virol. 18:171–180.PubMedGoogle Scholar
  70. 70.
    Robinson, L. K., 1950, Effect of heat and pH on strains of coxsackievirus, Proc. Soc. Exp. Biol. Med. 75:580–582.PubMedGoogle Scholar
  71. 71.
    Cords, C. E., James, C. G., and McLaren, L. C., 1975, Alteration of capsid proteins of coxsackievirus A13 by low ionic concentrations, J.Virol. 15:244–252.PubMedGoogle Scholar
  72. 72.
    Kaplan, A. S., and Melnick, J. L., 1954, Effect of milk and other dairy products on the thermal inactivation of Coxsackie viruses, Am. J. Public Health 44:1174–1184.Google Scholar
  73. 73.
    Wallis, C., and Melnick, J. L., 1961, Cationic stabilization—A new property of enteroviruses, Virology 16:683–700.Google Scholar
  74. 74.
    Kaplan, A. S., and Melnick, J. L., 1952, Effect of milk and cream on the thermal inactivation of human poliomyelitis virus, Am. J. Public Health 42:525–534.Google Scholar
  75. 75.
    Rightzel, W. A., Dice, J. R., McAlpine, R. J., Timm, F. A., McLean, I. W., Dixon, G. J., and Schabel, F. M., 1961, Antiviral effect of guanidine, Science 134:558–559.Google Scholar
  76. 76.
    Sergiescu, D., Horodniceanu, F., and Aubert-Combiescu, A., 1972, The use of inhibitors in the study of Picornavirus genetics, Prog. Med. Virol. 14:123–199.PubMedGoogle Scholar
  77. 77.
    Tamm, I., and Eggers, H. J., 1962, Differences in the selective virus inhibitory action of 2-(α-hydroxybenzyl)-benzimidaxole and guanidine-HCl, Virology 18:439–447.PubMedGoogle Scholar
  78. 78.
    Goldfield, M., Srihongse, S., and Fox, F. P., 1957. Hemagglutinin associated with certain human enteric viruses, Proc. Soc. Exp. Biol. Med. 96:788–791.PubMedGoogle Scholar
  79. 79.
    Rosen, L., and Kern, J., 1961, Hemagglutination and hemagglutination-inhibition with Coxsackie B viruses, Proc. Soc. Exp. Biol. Med. 107:626–628.PubMedGoogle Scholar
  80. 80.
    Grist, N. R., 1960, Isolation of Coxsackie A7 virus in Scotland, Lancet 1:1054–1060.PubMedGoogle Scholar
  81. 81.
    Mattern, C. F. T., 1962, Some physical and chemical properties of coxsackieviruses A9 and A10, Virology 17:520–532.PubMedGoogle Scholar
  82. 82.
    Sprunt, K., Redman, W. M., and Alexander, H. E., 1959, Infectious ribonucleic acid derived from enteroviruses, Proc. Soc. Exp. Biol. Med. 101:604–608.PubMedGoogle Scholar
  83. 83.
    Lindberg, A. M., Stalhandske, P. O. K., and Pettersson, U., 1987, Genome of coxsackievirus B3, Virology 156:50–63.PubMedGoogle Scholar
  84. 84.
    Stalhandske, P. O. K., Lindberg, M., and Pettersson, U., 1984, Replicase gene of coxsackievirus B3, J.Virol. 51:742–746.PubMedGoogle Scholar
  85. 85.
    Tracy, S., Liu, H. L., and Chapman, N. M., 1985, Coxsackievirus B3: Primary structure of the 5′ non-coding and capsid protein-coding regions of the genome, Virus Res. 3:263–270.PubMedGoogle Scholar
  86. 86.
    Kandolf, R., and Hofschneider, P. H., 1985, Molecular cloning of the genome of a cardiotropic Coxsackie B3 virus: Full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells, Proc. Natl. Acad. Sci. USA 82:4818–4822.PubMedGoogle Scholar
  87. 87.
    Rueckert, R. R., and Wimmer, E., 1984, Systematic nomenclature of picornavirus proteins, J.Virol. 50:957–959.Google Scholar
  88. 88.
    Finch, J. T., and Klug, A., 1959, Structure of poliomyelitis virus, Nature (Lond.) 183:1709–1714.Google Scholar
  89. 89.
    Mattern, C. F. T., and du Buy, H. G., 1956, Purification and crystallization of Coxsackie virus, Science 123:1037–1038.PubMedGoogle Scholar
  90. 90.
    Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffiths, J. P., Hecht, H-J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B., and Vriend, G., 1985, Structure of a human common cold virus and functional relationship to other picornaviruses, Nature (Lond.) 317:145–153.Google Scholar
  91. 91.
    Hogle, J. M., Chow, M., and Filman, D. J., 1985, Three-dimensional structure of poliovirus at 2.9 A resolution, Science 229:1538–1365.Google Scholar
  92. 92.
    Luo, M., Vriend, G., Kamer, G., Minor, I., Arnold, E. Rossmann, M. G., Boege, U., Scraba, D. G., Duke, G. M., and Palmenberg, A. C., 1987, The atomic structure of mengo virus at 3.0 resolution, Science 235:182–191.PubMedGoogle Scholar
  93. 93.
    Arnold, E., Luo, M., Vriend, G., Rossmann, M. G., Palmenberg, A. C., Parks, G. D., Nicklin, M. J. H., and Wimmer, E., 1987, Implication of the Picornavirus capsid structure for polyprotein processing, Proc. Natl. Acad. Sci. USA 84:21–25.PubMedGoogle Scholar
  94. 94.
    Abraham, A. S., and Cheever, F. S., 1963, Virus isolation studies of stool specimens obtained from patients with cholera, Proc. Soc. Exp. Biol. Med. 112:981–987.PubMedGoogle Scholar
  95. 95.
    Matthews, R. E. F., 1982, Classification and nomenclature of viruses, Intervirology 17:1–199.Google Scholar
  96. 96.
    Knowles, N. J., Buckley, L. S., and Pereira, H. G., 1979, Classification of porcine enteroviruses by antigenic analysis and cytopathic effects in tissue culture: Description of 3 new serotypes, Arch. Virol. 62:201–208.PubMedGoogle Scholar
  97. 97.
    Knowles, N. J., and Barnett, I. T. R., 1985, A serological classification of bovine enteroviruses, Arch. Virol. 83:141–155.PubMedGoogle Scholar
  98. 98.
    Hamblin, C., Knowles, N.J., and Hedger, R. S., 1985, Isolation and identification of bovid enteroviruses from free-living wild animals in Botswana, Vet. Rec. 116:237 – 238.Google Scholar
  99. 99.
    McFerran, J. B., and McNulty, M. S., 1986, Recent advances in Enterovirus infections of birds, A Seminar in the CEC Agricultural Research Programme, Brussels, June 1985 (J. B. McFerran and M. S. McNulty, eds.), Veterinary Research Laboratories, Belfast, Northern Ireland.Google Scholar
  100. 100.
    Ozden, S., Tangy, F., Chamorro, M., and Brahic, M., 1986, Theiler’s virus genome is closely related to that of encephalomyocarditis virus, the prototype cardiovirus, J. Virol. 60:1163–1165.PubMedGoogle Scholar
  101. 101.
    Yamashita, H., Akashi, H., and Inaba, Y., 1985, Isolation of a new serotype of bovine rhinovirus from cattle, Arch. Virol. 83:113–116.PubMedGoogle Scholar
  102. 102.
    Steck, F., Hofer, B., Schaeren, B., Nicolet, J., and Gerber, H., 1978, Equine rhinoviruses: New serotypes, in: Proceedings of the Fourth International Conference on Equine Infectious Diseases, Lyon, September 1976 (J. T. Bryans and H. Berber, eds.), Veterinary Publications, Inc., Princeton, New Jersey.Google Scholar
  103. 103.
    Bohm, H. O., 1965, Uber die isolierung und Charakterisierung eines Picornavirus vom pferd, Zentralbl. Vet. Med. 11B:240–250.Google Scholar
  104. 104.
    Mumford, J. A., and Thomson, G. R., 1978, Studies on picornaviruses isolated from the respiratory tract of horses, in: Proceedings of the Fourth International Conference on Equine Infect. Diseases, Lyon, Sept. 1976 (J. T. Bryans and H. Gerber, eds.), Veterinary Publications, Inc., Princeton, New Jersey.Google Scholar
  105. 105.
    Fukunaga, Y., Kumanomido, T., Imagawa, H., Ando, Y., Kamada, M., Wada, R., and Akiyama, Y., 1981, Isolation of picornavirus from horses associated with Getah virus infection, Jpn. J. Vet. Sci. 43:569–572.Google Scholar
  106. 106.
    King, L. A., Pullin, J. S. K., Stanway, G., Almond, J. W., and Moore, N. F., 1987, Cloning of the genome of cricket paralysis virus: Sequence of the 3′ end, Virus Res. 6:331–344.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Brian W. J. Mahy
    • 1
  1. 1.Animal Virus Research InstitutePirbright, Woking, SurreyEngland

Personalised recommendations