Influence of Swirl Flow on Heat Transfer To Nitrogen In Dispersed-Flow Film Boiling

  • A. E. Bergles
  • W. D. Fuller
  • S. J. Hynek
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 16)


Systems involving forced-convection vaporization may operate at least partially in a post-critical heat flux or liquid-deficient mode. This situation occurs commonly in once-through steam boilers, in rocket motors which are regeneratively cooled by vaporization of the cryogenic fuel, and cryogenic vaporizers. At the high-quality conditions normally of interest, the heated surface is nominally dry, and the liquid flows as droplets dispersed in the channel core; thus, the regime can be described as dispersed-flow film boiling. One of the significant features of established dispersed-flow film boiling is the existence of superheat in the vapor well below 100% equilibrium quality, and the presence of liquid droplets downstream of the 100% quality point [1–3]. It is clear that dispersed-flow film boiling is not a particularly efficient heat-transfer process. With nitrogen, for example, the non-equilibrium effects cause actual qualities to be as much as 50% below equilibrium qualities; furthermore, liquid droplets are still observed at equilibrium qualities of 300% [2]. As a consequence of this, boilers operate at high surface temperatures and must contain a large surface area to effect complete vaporization.


Heat Flux Wall Temperature Critical Heat Flux Mass Velocity Twisted Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Parker and R. J. Grosh, Argonne National Laboratories Rept. 6291 (1961).Google Scholar
  2. 2.
    R. P. Forslund and W. M. Rohsenow,J. Heat Transfer, 90:399 (1968).CrossRefGoogle Scholar
  3. 3.
    R. E. Mueller, GEAP-5423 (1967).Google Scholar
  4. 4.
    L. S. Tong, Boiling Heat Transfer and Two-Phase Flow, John Wiley and Sons, New York (1965).Google Scholar
  5. 5.
    W. F. Laverty and W. M. Rohsenow, J. Heat Transfer, 89:90 (1967).CrossRefGoogle Scholar
  6. 6.
    A. W. Bennett, G. F. Hewitt, H. A. Kearsey, and R. K. F. Keeys, AERE-R5373 (1967).Google Scholar
  7. 7.
    S. J. Hynek, W. M. Rohsenow, and A. E. Bergles, M.I.T. Engineering Projects Laboratory Rept. 70586–63 (1969).Google Scholar
  8. 8.
    E. P. Quinn, GEAP-4786 (1965).Google Scholar
  9. 9.
    D. F. Kunsemiller, GEAP-5073 (1966).Google Scholar
  10. 10.
    E. P. Quinn, GEAP-4646 (1964).Google Scholar
  11. 11.
    W. R. Gambill, R. D. Bundy, and R. W. Wansbrough, Chem. Eng. Progr. Symp. Ser., 57 (32): 127 (1961).Google Scholar
  12. 12.
    R. Viskanta, Nuclear Sci. Eng., 10:202 (1961).Google Scholar
  13. 13.
    Anon., Mech. Eng., 89:64 (1967).Google Scholar
  14. 14.
    R. H. Pai and D. Pasint, Electric Light and Power, 43: (1):66 (1965).Google Scholar
  15. 15.
    J. R. Peterson, NASA R66SD3020 (1966).Google Scholar
  16. 16.
    J. C. Burke and A. H. Rawdon, ASME Paper No. 65-HT-37 (1965).Google Scholar
  17. 17.
    A. J. Sellers, G. M. Thur, and M. K. Wong, Argonne National Laboratory Rept. 7100:573 (1965).Google Scholar
  18. 18.
    H. F. Poppendiek, N. D. Green, C. M. Sabin, L. V. Feigenbutz, G. Mouritzen, P. E. Schwartz, D. J. Connelly, and W. A. Morton, Geoscience Limited Rept. 42 (1966).Google Scholar
  19. 19.
    W. D. Fuller, S.M. Thesis, Massachusetts Institute of Technology, Cambridge, Mass. (1968).Google Scholar
  20. 20.
    A. E. Bergles, R. F. Lopina, and M. P. Fiori,J. Heat Transfer, 89:69 (1967).CrossRefGoogle Scholar
  21. 21.
    E. O. Moeck, G. A. Wikhammer, I. P. L. MacDonald, and J. G. Collier, AECL-2109 (1964).Google Scholar
  22. 22.
    R. I. Sevastianov, Y. V. Zaharov, and I. T. Aladyev, Akad. Nauk. SSR Iz. OTN Energ. i Trans., (1): 129 (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • A. E. Bergles
    • 1
  • W. D. Fuller
    • 2
  • S. J. Hynek
    • 3
  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.USA

Personalised recommendations