Advertisement

Experimental Effects of Pressure, Subcooling, and Diameter on Thin-Wire Film Boiling of Liquid Nitrogen

  • R. J. Simoneau
  • K. J. Baumeister
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 16)

Abstract

Because of its low temperature, a cryogenic fluid can film-boil by simply bringing it in contact with an ambient or room-temperature surface. As a result, film boiling is an important aspect of cryogenic heat transfer. It is also important in conventional boilers, in quenching, and in similar applications.

Keywords

Thin Wire Large Cylinder Horizontal Wire Cryogenic Fluid Cryogenic Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Bromley, Chem. Eng. Progr., 46 (5): 221 (1950).Google Scholar
  2. 2.
    J. T. Banchero, G. E. Barker, and R. H. Boll, Chem. Eng. Progr. Symp. Ser., 51 (17):21 (1955).Google Scholar
  3. 3.
    B. P. Breen and J. W. Westwater, Chem. Eng. Progr., 58 (7): 67 (1962).Google Scholar
  4. 4.
    W. H. McAdams, J. N. Addoms, P. M. Rinaldo, and R. S. Day, Chem. Eng. Progr., 44 (8):639 (1948).Google Scholar
  5. 5.
    S. Nukiyama, J. Soc. Mech. Eng. (Japan), 37 (206): 367 (1934).Google Scholar
  6. 6.
    T. H. K. Frederking, AIChE J., 5 (3):403 (1959).CrossRefGoogle Scholar
  7. 7.
    K.J. Baumeister and T. D. Hamill, “Laminar Flow Analysis of Film Boiling From a Horizontal Wire,” NASA TN D-4035 (1967).Google Scholar
  8. 8.
    K. J. Baumeister and T. D. Hamill, “Film Boiling from a Thin Wire as an Optimal Boundary-Value Process,” paper 67-HT-62, ASME (1967).Google Scholar
  9. 9.
    M. L. Pomerantz, J. Heat Transfer, 86 (2):213 (1964).CrossRefGoogle Scholar
  10. 10.
    C. T. Sciance, C. P. Colver, and C. M. Sliepcevich, in: Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1967), p. 395.Google Scholar
  11. 11.
    C.T. Sciance, C. P. Colver, and C. M. Sliepcevich, Chem. Eng. Progr. Symp. Ser., 63 (77): 115 (1967).Google Scholar
  12. 12.
    L. E. Brown and C. P. Colver, in: Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 647.Google Scholar
  13. 13.
    G. J. Capone and E. L. Park, Jr., in: Advances in Cryogenic Engineering, Vol. 15, Plenum Press, New York (1970), p. 283.Google Scholar
  14. 14.
    U. Grigull and E. Abadzic, “Heat Transfer from a Wire in the Critical Region,” paper 8, presented at Symposium on Heat Transfer and Fluid Dynamics of Near Critical Fluids, Inst. Mech. Eng., Bristol, England (Mar. 27–29, 1968).Google Scholar
  15. 15.
    K. Nishikawa and K. Miyabe, Mem. Fac. Eng. Kyusha Univ., 25 (1):1 (1965).Google Scholar
  16. 16.
    K. J. Baumeister and R. J. Simoneau, in: Advances in Cryogenic Engineering, Vol. 15, Plenum Press, New York (1970), p. 286.Google Scholar
  17. 17.
    R. J. Simoneau and K. J. Baumeister, “Photographic and Data Study of Pressure, Subcooling, and Diameter Effects on Film Boiling Nitrogen on Horizontal Thin Wires (With Film Supplement),” to be published as NASA TNGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • R. J. Simoneau
    • 1
  • K. J. Baumeister
    • 1
  1. 1.NASA Lewis Research CenterClevelandUSA

Personalised recommendations