Advertisement

Near-Isothermal Dissipative Flow of Liquid He II at Supercritical Velocities

  • F. C. Vote
  • J. E. Myers
  • H. B. Chu
  • T. H. K. Frederking
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 16)

Abstract

The past few years have seen the development of new equipment for transport [1], liquid-level control [2], and cooling [3] of superfluid liquid helium II (liquid He4 below the λ point). In these systems, mass transport of the liquid takes place in channels of various sizes. Accordingly, an optimization of flow conditions appears to be possible as soon as the flow resistances are characterized. The latter have been studied since the discovery of superfluidity with increasing emphasis on very accurate determination of the critical velocities where flow resistance begins to be observed [4–7]. In addition, flow resistances with nearly perfect isothermal wall conditions have been studied more recently in well-insulated narrow channels [8]. The elimination of insulation deficiencies is important in narrow channels (diameter, D < 10-3 cm) since it was noted that minute heat inputs may cause departures from flow resistances of channels with seemingly isothermal walls [9].

Keywords

Reynolds Number Critical Velocity Flow Resistance Resistance Ratio Tube Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Lyneis, M. S. McAshan, and H. A. Schwettman, in: Proc. 1968 Brookhaven Summer Study on Superconducting Devices and Accelerators, Brookhaven National Lab. Publ. No. BNL-50155 (C-55) (1968), Pt. I, p. 52.Google Scholar
  2. 2.
    A. Eisner and G. Klipping, in: Advances in Cryogenic Engineering, Vol. 14, Plenum Press, New York (1969), p. 416.Google Scholar
  3. 3.
    F. A. Staas and A. P. Severijns, Cryogenics, 9:422 (1969).CrossRefGoogle Scholar
  4. 4.
    K. R. Atkins, Liquid Helium, Cambridge University Press, England (1959).Google Scholar
  5. 5.
    J. Wilks, The Properties of Solid and Liquid Helium, Oxford, Clarendon (1967).Google Scholar
  6. 6.
    R. J. Donnelly, Experimental Superfluidity, University of Chicago Press, Chicago (1967).Google Scholar
  7. 7.
    W. E. Keller, Helium-3 and Helium-4, Plenum Press, New York (1969).Google Scholar
  8. 8.
    W. E. Keller and E. F. Hammel, Physics, 2:221 (1966).Google Scholar
  9. 9.
    W. E. Keller and E. F. Hammel, Cryogenics, 5:245 (1965).CrossRefGoogle Scholar
  10. 10.
    H. Schlichting, Boundary Layer Theory, McGraw-Hill Book Co., 4th edition, New York (1960).Google Scholar
  11. 11.
    F. A. Staas, K. W. Taconis, and W. M. van Alphen, Physica, 27:893 (1961).CrossRefGoogle Scholar
  12. 12.
    P. Nozieres, W. F. Vinen, and P. W. Anderson, in: Quantum Fluids (D. F. Brewer, editor), North Holland, Amsterdam (1966), pp. 1, 74, 146.Google Scholar
  13. 13.
    H. E. Rorschach, Phys. Rev., 105:785 (1957).CrossRefGoogle Scholar
  14. 14.
    J. Beenakker, in: Low Temperature Physics (C. de Witt, B. Dreyfus, P. G. DeGennes, editors), Gordon and Breach, New York (1962), p. 261.Google Scholar
  15. 15.
    T. H. K. Frederking and J. D. Schweikle, in: Proceedings 9th International Conference Low Temperatur Physics, Plenum Press, New York (1965), Pt. A, p. 291.Google Scholar
  16. 16.
    3-M Company, St. Paul, Minnesota.Google Scholar
  17. 17.
    K. S. Balain and C. J. Bergeron, Rev. Sci. Instr., 30:1058 (1959).CrossRefGoogle Scholar
  18. 18.
    F. C. Vote, M.S. Thesis, University of California, Los Angeles, Calif. (1965).Google Scholar
  19. 19.
    J. E. Myers, M.S. Thesis, University of California, Los Angeles, Calif. (1967).Google Scholar
  20. 20.
    H. E. Johns, J. O. Wilhelm, and H. Grayson Smith, Can. J. Res., 17A:150 (1939).Google Scholar
  21. 21.
    J. F. Allen and A. D. Misener, Proc. Roy. Soc. (London), A172:467 (1939).Google Scholar
  22. 22.
    K. R. Atkins, Proc. Phys. Soc., A64:833 (1951).Google Scholar
  23. 23.
    S. M. Bhagat and K. Mendelssohn, Cryogenics, 2:34 (1961).CrossRefGoogle Scholar
  24. 24.
    J. N. Kidder and W. M. Fairbank, Phys. Rev., 127:987 (1962).CrossRefGoogle Scholar
  25. 25.
    J. N. Kidder and H. A. Blackstead, in: Proceedings 9th International Conference Low Temperature Physics, Plenum Press, New York (1965), Pt. A, p. 331.Google Scholar
  26. 26.
    W. E. Keller and E. F. Hammel, in: Proceedings 9th International Conference Low Temperature Physics, Plenum Press, New York (1965), Pt. A, p. 307.Google Scholar
  27. 27.
    W. M. Van Alphen, G. J. Van Hastaren, R. DeBruyn Ouboter, and K. W. Taconis, Phys. Letters, 20:474(1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • F. C. Vote
    • 1
  • J. E. Myers
    • 1
  • H. B. Chu
    • 1
  • T. H. K. Frederking
    • 1
  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations