Advertisement

High-Speed Motion-Picture Studies of Film Boiling in Liquid Helium II

  • F. L. Ebright
  • R. K. Irey
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 16)

Abstract

The extraordinary properties of liquid helium II are well documented in several excellent texts [1–3]. The fact that the thermal conductivity of liquid helium is increased by a factor of about 107 through the lambda transition accounts for many of the unusual heat-transfer properties of the superfluid helium.

Keywords

Test Section Liquid Helium Wire Diameter Depth Effect Superfluid Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Atkins, Liquid Helium, Cambridge University Press, New York (1959).Google Scholar
  2. 2.
    C. J. Lane, Superfluid Physics, McGraw-Hill Book Co., New York (1962).Google Scholar
  3. 3.
    J. Wilks, The Properties of Liquid and Solid Helium, Clarendon Press, Oxford (1967).Google Scholar
  4. 4.
    G. P. Lemieux and A. C. Leonard, Paper No. 67-WA/HT-3, ASME, New York (1967).Google Scholar
  5. 5.
    T. H. K. Frederking, Y. C. Wu, and B. H. Clement, AICHE J., 12:40 (1966).CrossRefGoogle Scholar
  6. 6.
    J. S. Goodling and R. K. Irey, in: Advances in Cryogenic Engineering, Vol. 14, Plenum Press, New York (1969), p. 159.Google Scholar
  7. 7.
    R. C. Steed and R. K. Irey, in: Advances in Cryogenic Engineering, Vol 15, Plenum Press, New York (1970), p. 299.Google Scholar
  8. 8.
    E. L. Andronikashvili and G. G. Mirskaia, J. Exper. Theor. Phys. (USSR), 29:490 (1955) andGoogle Scholar
  9. 8a.
    E. L. Andronikashvili and G. G. Mirskaia, Sov. Phys. JETP, 2 (3):406 (1956).Google Scholar
  10. 9.
    T. H. K. Frederking, Forschung, 27:317 (1958).Google Scholar
  11. 10.
    T. H. K. Frederking and P. Grassman, Suppl. Bull. Inst. Intl. du Froid, Annexe 2: 317 (1958).Google Scholar
  12. 11.
    L. Rinderer and F. Haenseler, Helvitica Physica Acta, 32:322 (1959).Google Scholar
  13. 12.
    R. K. Irey, P. W. McFadden, and R. A. Madsen, in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 361.Google Scholar
  14. 13.
    R. M. Holdredge and P. W. McFadden, in: Advances in Cryogenic Engineering, Vol. 11, Plenum Press, New York (1966), p. 507.Google Scholar
  15. 14.
    G. P. Lemieux and A. C. Leonard, in: Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 624.Google Scholar
  16. 15.
    W. J. Rivers and P. W. McFadden, Trans. ASME, Sec. C, J. Heat Trans., 88 (4):343 (1966).CrossRefGoogle Scholar
  17. 16.
    F. L. Ebright, Ph.D. Dissertation, University of Florida, Gainesville, Fla.(1969).Google Scholar
  18. 17.
    W. J. Rivers, Ph.D. Dissertation, Purdue University, Lafayette, Ind. (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • F. L. Ebright
    • 1
  • R. K. Irey
    • 1
  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations