Advertisement

Nucleate Boiling of Liquid Helium I on Gallium Single Crystals

  • V. Purdy
  • C. Linnet
  • T. H. K. Frederking
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 16)

Abstract

The surface roughness in nucleate boiling is known to be an important parameter. It permits the trapping of vapor or gas which may preexist as an uncondensed phase in cavities prior to nucleation. This behavior is significant for room-temperature liquids because changes in the rms roughness values are known to affect the surface excess temperatures ΔT (above the saturation temperature of the bulk liquid). In contrast, in liquid He I (He4 above the λ point), no marked ΔT differences between various rough surfaces have been found [1] (though polishing caused an increase in ΔT). Optimum surface conditions, however, are desirable for efficient cooling in some components of liquid-helium cryosystems. Therefore, the purpose of the present study was to provide additional details of this anomalous behavior by obtaining nucleate-cooling data for well-defined single-crystal surfaces (Ga). The crystal surface temperature was determined directly, i.e., without additional thermal-contact resistances between the heat-transfer surface and thermometer. This condition was realized by using the gallium single crystal as the resistance thermometer. The first part of this paper considers the experimental program with details of the gallium crystals used. This is followed by results of the study and conclusions concerned with optimum surface treatment for minimum solid excess temperatures, and with data interpretation.

Keywords

Liquid Helium Saturation Temperature Excess Temperature Peak Flux Heater Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Boissin, J. J. Thibault, J. Roussel, and E. Faddi, in: Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 607.Google Scholar
  2. 2.
    R. I. Boughton and M. Yagub, Phys. Rev. Letters, 20:108 (1968).CrossRefGoogle Scholar
  3. 3.
    T. Frederking and R. Reinmann, Helv. Phys. Acta, 33:999 (1960).Google Scholar
  4. 4.
    G. K. White, Experimental Techniques in Low Temperature Physics, Oxford, Clarendon Press (1959), p. 107.Google Scholar
  5. 5.
    B. W. Clement and T. H. K. Frederking, in: Pure and Applied Cryogenics, Vol. 6, Pergamon Press, London (1966), p. 61.Google Scholar
  6. 6.
    D. N. Lyon, in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 371.Google Scholar
  7. 7.
    K. J. Coding and H. Merte, J. Eng. Industry (ASME), 91B:513 (1969).Google Scholar
  8. 8.
    J. A. Clark, “Cryogenic Heat Transfer,” in: Advances in Heat Transfer, Vol. 5, Academic Press, New York (1968), p. 325.Google Scholar
  9. 9.
    C. N. Whetstone and R. W. Boom, in: Advances in Cryogenic Engineering, Plenum Press, New York (1968), p. 68.Google Scholar
  10. 10.
    R. V. Smith, in: Proceedings of 1968 Brookhaven Summer Study on Superconductive Devices and Accelerators, Brookhaven National Laboratory Publ. No. BNL-50155 (C-55), part I, p. 249.Google Scholar
  11. 11.
    F. A. Mueller, in: Proceedings 2nd International Cryogenic Engineering Conference, Brighton, England (1968) p. 264.Google Scholar
  12. 12.
    S. S. Kutateladze, “Heat Transfer on Condensation and Boiling,” State Sci. Tech. Publ. Lit. Machinery, Moscow (AEC Transi. 3770, Tech. Info. Serv., Oak Ridge, Tenn.).Google Scholar
  13. 13.
    P. Spiegler and J. Hopenfeld, Rev. Sci. Instr., 34:308 (1963).CrossRefGoogle Scholar
  14. 14.
    T. H. K. Frederking, in: Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1964), p. 71.Google Scholar
  15. 15.
    A. Karagounis, Suppl. Bull. U.R. Comm. 1 & 2, Louvain (1956), p. 195.Google Scholar
  16. 16.
    D. Griffiths and R. Watton, British J. Appl. Phys., 17:535 (1966).CrossRefGoogle Scholar
  17. 17.
    J. S. Goodling and R. K. Irey, in: Advances in Cryogenic Engineering, Vol. 14, Plenum Press, New York (1969), p. 159.Google Scholar
  18. 18.
    A. P. Dorey, Cryogenics, 5:146 (1965).CrossRefGoogle Scholar
  19. 19.
    R. D. Cummings and J. L. Smith, “Liquid Helium Technology,” in: Pure and Applied Cryogenics, Vol. 6, Pergamon Press, London (1966), p. 85.Google Scholar
  20. 20.
    A. D. Appleton and J. S. H. Ross, in: Low Temperatures and Electric Power, Bull. I.I.R., Comm. I. Annexe 1969, p. 269.Google Scholar
  21. 21.
    M. Jakob and W. Linke, Forschg., 4:75 (1933)Google Scholar
  22. 21a.
    M. Jakob, Z. VDI, 76:1161 (1932).Google Scholar
  23. 22.
    S. G. Bankoff, in: Advances in Chemical Engineering, Vol. 6, Academic Press, New York (1966), p. 49.Google Scholar
  24. 23.
    L. D. Landau and E. M. Lifshits, Statistical Physics, Pergamon, London (1958), p. 457.Google Scholar
  25. 24.
    J. Frenkel, Kinetic Theory of Liquids, Dover, New York (1955), p. 366.Google Scholar
  26. 25.
    J. W. Westwater, in: Advances in Chemical Engineering, Vol. 1, Academic Press, New York (1956), p. 1.CrossRefGoogle Scholar
  27. 26.
    E. G. Brentari, P. J. Giarratano, and R. V. Smith, NBS Tech. Note 317 (1965).Google Scholar
  28. 27.
    J. M. Astruc, P. Perroud, A. Lacaze, and L. Weil, in: Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1967), p. 387.Google Scholar
  29. 28.
    J. Wilks, The Properties of Solid and Liquid Helium, Clarendon Press, Oxford (1967), p. 404.Google Scholar
  30. 29.
    R. S. Kagiwada, J. C. Fraser, I. Rudnick, and D. Bergman, Phys. Rev. Letters, 22:338 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • V. Purdy
    • 1
  • C. Linnet
    • 1
  • T. H. K. Frederking
    • 1
  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations