Phase Equilibria of the Helium-Nitrogen System from 122 to 126°K

  • P. C. Tully
  • W. E. DeVaney
  • H. L. Rhodes
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 16)


The helium-nitrogen system has been studied by several investigators [1–8]. The highest temperatures studied were 121.74°K by Streett [8], 122.8°K by Buzyna, Macriss, and Ellington [1], and 123.1°K by Porter [6]. Scientific interest in the critical behavior of this system—important in the production of high-purity helium from natural gas—has been stimulated recently by Streett’s work, which revealed minimum critical conditions at 119.89°K and 8500 psia, and by further investigation by Streett and Hill [9] to higher pressures, which showed that the critical conditions continued to increase from the minimum to at least 136.5°K and almost 4000 atm.


Consistency Test Platinum Resistance Thermometer Sight Glass Screw Pump Suction Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Buzyna, R. A. Macriss, and R. T. Ellington, Chem. Eng. Progr. Symp. Series, 59 (44): 101 (1963).Google Scholar
  2. 2.
    W. E. DeVaney, B. J. Dalton, and J. C. Meeks, Jr., J. Chem. Eng. Data, 4:473 (1963).Google Scholar
  3. 3.
    A. Fedoritenko and M. Ruhemann, Tech. Phys. (U.S.S.R.), 4:36 (1937).Google Scholar
  4. 4.
    M. G. Gonikberg and W. G. Fastowsky, Acta Physicochimica (U.S.S.R.), 12:67 (1940).Google Scholar
  5. 5.
    F. F. Kharakhorin, J. Tech. Phys. (U.S.S.R.), 10 (18): 1533 (1940).Google Scholar
  6. 6.
    F. P. Porter, “The Solubility of Helium in Liquid Nitrogen, Methane, Ethane, and Carbon Dioxide,” Bureau of Mines unpublished Rept. (1925), 17 pp. On file at Helium Research Center, Amarillo, Tex.Google Scholar
  7. 7.
    N. C. Rodewald, J. A. Davis, and F. Kurata, AIChE J., 10:937 (1964).CrossRefGoogle Scholar
  8. 8.
    W. B. Streett, Chem. Eng. Progr. Symp. Series, 63 (81): 37 (1967).Google Scholar
  9. 9.
    W. B. Streett and J. L. E. Hill, J. Chem. Phys., 52:1402 (1970).CrossRefGoogle Scholar
  10. 10.
    W. E. DeVaney, H. L. Rhodes, and P. C. Tully, “A Low Gradient, Windowed Gas Cryostat for Operation Above 95° Kelvin,” to be published in Cryogenic Technology. Google Scholar
  11. 11.
    M. J. Hiza and A. G. Duncan, Rev. Sci. Instr., 40 (3):513 (1969).CrossRefGoogle Scholar
  12. 12.
    H. L. Rhodes and P. C. Tully, in Helium Symposia Proceedings in 1968A Hundred Years of Helium, comp, by H. W. Lipper, Bureau of Mines Information Circular 8417 (1969), p. 79.Google Scholar
  13. 13.
    J. E. Miller, A. J. Carroll, and D. E. Emerson, “Preparation of Primary Standard Gas Mixtures for Analytical Instruments,” Bureau of Mines Rept. of Investigations 6674 (1965), 10 pp.Google Scholar
  14. 14.
    P. C. Tully, W. E. DeVaney, and J. C. Meeks, Jr., “Vapor Pressure of Pure Liquid Nitrogen,” Bureau of Mines Information Circular 8322 (1967), 45 pp.Google Scholar
  15. 15.
    H. C. Van Ness, Classical Thermodynamics of Non-Electrolyte Solutions, Pergamon Press, New York (1964), p. 147.Google Scholar
  16. 16.
    R. E. Barieau, “Exact Thermodynamic Equations Applicable to Binary Liquid-Vapor Equilibrium Data,” Helium Research Center Memorandum Rept. No. 36 (Mar. 1964), 87 pp.Google Scholar
  17. 17.
    T. R. Strobridge, NBS Tech. Note 129 (Jan. 1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • P. C. Tully
    • 1
  • W. E. DeVaney
    • 1
  • H. L. Rhodes
    • 1
  1. 1.U.S. Bureau of Mines, Helium Research CenterAmarilloUSA

Personalised recommendations