Linear Dichroism of Rods and Cones

  • Ferenc I. Hárosi
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 1)


Though Boll (1876) was the first to note the bleaching of the reddish colour of the freshly-removed frog retina and Kühne (1878) was the first to extract the light-sensitive coloured substance that he named rhodopsin, it was Schmidt (1938) who introduced a microscopic technique for studying the optical properties of the pigment-bearing cells. Using the polarising microscope, he not only discovered the birefringent and dichroic properties of the frog retinal rod outer segment but accounted for them as well, qualitatively, at least, in terms of the molecular models of cell structure that he proposed. From his observation of dichroism of the rhodopsin-containing rods, he concluded that the pigment molecules must be oriented in the outer segment. Moreover, since transversely polarised light is strongly absorbed by the side-illuminated isolated cells, in the spectral region where rhodopsin absorption is strongest, but not when the light is polarised along the length of the rod, he assigned a transverse orientation to the rhodopsin molecules within the rod cells.


Outer Segment Visual Pigment Specific Density Linear Dichroism Dichroic Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boll, F. (1876). Zur Anatomie und Physiologie der Retina. Monatsber. Kön. Preus. Akad. Wissensch. Berlin. Nov. 783–788.Google Scholar
  2. Denton, E.J. (1954a). A method of easily observing the dichroism of the visual rods. J. Physiol. 124: 16–17P.PubMedGoogle Scholar
  3. Denton, E.J. (1954b). On the orientation of molecules in the visual rods of Salamandra maculosa. J. Physiol. 124: 17–18P.PubMedGoogle Scholar
  4. Denton, E.J. (1959). The contributions of the orientated photosensitive and other molecules to the absorption of whole retina. Proc. R. Soc. Ser. B. 150: 78–94.CrossRefGoogle Scholar
  5. Dobelle, W.H., W.B. Marks and E.F. MacNichol Jr. (1969). Visual pigment density in single primate foveal cones. Science 166: 1508–1510.PubMedCrossRefGoogle Scholar
  6. Gilardi, R., I.L. Karle, J. Karle, and W. Sperling (1971). Crystal structure of the visual chromophores, 11-cis and all-trans retinal. Nature 232: 187–189.PubMedCrossRefGoogle Scholar
  7. Harosi, F.I. (1971). Frog rhodopsin in situ: orientational and spectral changes in the chromophores of isolated retinal rod cells. Ph.D. Thesis. The Johns Hopkins University, Baltimore, Md.Google Scholar
  8. Harosi, F.I. (1974). Absorption Spectra and linear dichroism of some amphibian photoreceptors. (In preparation).Google Scholar
  9. Harosi, F.I. and E.F. MacNichol Jr. (1974a). Visual pigments of goldfish cones. Spectral properties and dichroism. J. Gen. Physiol. 63: 279–304.PubMedCrossRefGoogle Scholar
  10. Harosi, F.I. and E.F. MacNichol Jr. (1974b). Dichroic microspectrophotometer: A computer-assisted, rapid, wavelength-scanning photometer for measuring linear dichroism in single cells. J. Opt. Soc. Am. 64: 903–918.PubMedCrossRefGoogle Scholar
  11. Harosi, F.I. and F.E. Malerba (1974). Plane-polarised light in microspectrophotometry. Vision Res. 14 (in press).Google Scholar
  12. Kühne, W. (1878). On the photochemistry of the retina and on visual purple, edited by M. Foster. Macmillan, London.Google Scholar
  13. Liebman, P.A. (1962). In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2: 161–178.PubMedCrossRefGoogle Scholar
  14. Liebman, P.A. (1972). Microspectrophotometry of photoreceptors. In: Handbook of Sensory Physiology, Vol. VII/1. Photochemistry of Vision, ed. H.J.A. Dartnall, Chap. 12, p. 481–528. Springer, N.Y.CrossRefGoogle Scholar
  15. Liebman, P.A. and G. Entine (1964). Sensitive low-light-level microspectrophotometer: detection of photosensitive pigments of retinal cones. J. Opt. Soc. Am. 54: 1451–1459.PubMedCrossRefGoogle Scholar
  16. Liebman, P.A. and G. Entine (1968). Visual pigments of frog and tadpole (Rana pipiens). Vision Res. 8: 761–775.PubMedCrossRefGoogle Scholar
  17. Marks, W.B. (1963). Difference spectra of the visual pigments in single goldfish cones. Ph.D. Thesis. The Johns Hopkins University, Baltimore, Md.Google Scholar
  18. Marks, W.B. (1965). Visual pigments of single goldfish cones. J. Physiol. 178: 14–32.PubMedGoogle Scholar
  19. Oster, G. (1955). Birefringence and Dichroism. In: Physical Techniques in Biological Research. Vol. I. Optical Techniques. Chapter 8, pp. 439–460, edited by G. Oster and A.W. Pollister, Academic Press, New York.Google Scholar
  20. Schmidt, W.J. (1938). Polarisations-optische Analyse eines Eiweiss-Lipoid-Systems, erläutert am Aussenglied der Sehzellen. Kolloid-Z. 85: 137–148.CrossRefGoogle Scholar
  21. Svaetichin, G., K. Negishi, and R. Fatehchand (1965). Cellular mechanisms of a Young-Hering visual system. In: Ciba Foundation Symposium on Colour Vision: Physiology and Experimental Psychology, p. 178–207, edited by A.V.S. DeReuck and J. Knight, Little, Brown, Boston.Google Scholar
  22. Wald, G. (1968). The molecular basis of visual excitation. Nature 219: 800–807.PubMedCrossRefGoogle Scholar
  23. Wald, G., P.K. Brown, and I.R. Gibbons (1963). The problem of visual excitation. J. Opt. Soc. Am. 53: 20–35.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Ferenc I. Hárosi
    • 1
  1. 1.NINDSNational Institutes of HealthBethesdaUSA

Personalised recommendations