Approaches to the Study of Contractility in the Rods and Cones

  • P. Couillard
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 1)


In the present lecture, I shall try to give a necessarily complicated answer to a simple question: Is there an active contractile mechanism in the rods and cones of the animals like fish, which demonstrate retinomotor response? What is the available evidence for such a mechanism and how should we look for additional evidence?


Visual Cell Rana Pipiens Contractile Mechanism Series Elastic Element Contractile System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, M.A. (1971). Les réponses rétinomotrices, caractères et mécanismes. Vision Res. 11: 1225–1288.PubMedCrossRefGoogle Scholar
  2. Ali, M.A., Latendresse, D. & Couillard, P. (1971). Colorabilité au TPA de la rétine de divers vértébres. Vision Res. 11: 1023–25.PubMedCrossRefGoogle Scholar
  3. Anctil, M., Ali, M.A. & Couillard, P. (1973). Isolated retinal cells of some lower vertebrates. Rev. Can. Biol. 32: 107–19.PubMedGoogle Scholar
  4. Arronet, N.I. (1973). Motile muscle and cell models. Consultants Bureau, N.Y. Translation of 1972, Russian edition.Google Scholar
  5. Bannister, L.H. & Tatchell, E.C. (1968). Contractility and the fibre systems of Stentor coeruleus. J. Cell. Sci. 3: 295.PubMedGoogle Scholar
  6. Behnke, O. & Forer, A. (1967). Evidence for four classes of microtubules in individual cells. J. Cell. Sci. 2: 169–92.PubMedGoogle Scholar
  7. Bendali, J.R. (1969). Muscles, molecules and movement. Heinemann, London.Google Scholar
  8. Berg, H.C. & Anderson, R.A. (1973). Bacteria swim by rotating their flagellar filaments. Nature 245: 380–82.PubMedCrossRefGoogle Scholar
  9. Bluemink, J.G. (1971). Effects of cytochalasin B on surface contractility and cell junction formation during egg cleavage in Xenopus laevis. Cytobiology 3: 176–87.Google Scholar
  10. Carlson, F.D. & Wilkie, D.R. (1974). Muscle Physiology. Prentice Hall, Englewood Cliffs, N.J.Google Scholar
  11. Carter, S.B. (1972). Les cytochalasines, outil de recherche en Cytologie. Endeavour 31: 73–82.Google Scholar
  12. Couillard, P. & Ali, M.A. (1970). Sur une technique d’isolement des cellules visuelles chez les vertébrés à sang froid. An. ACFAS Suppl. 37: 6.Google Scholar
  13. Drujan, B.D. & Svaetichin, G. (1972). Characterization of different classes of isolated retinal cells. Vision Res. 12: 1777–84.PubMedCrossRefGoogle Scholar
  14. Engström, K. (1963). Structure, organization and ultrastructure of the visual cells in the teleost family Labridae. Acta Zool. 44: 1–41.CrossRefGoogle Scholar
  15. Freed, J.J. & Ledowitz, M.M. (1970). The association of a class of saltatory movements with microtubules in cultured cells. J. Cell. Biol. 45: 334–54.PubMedCrossRefGoogle Scholar
  16. Gicquaud, C.R. & Couillard, P. (1972). Préservation des mouvements dans le cytoplasme démémbrane d’Amoeba proteus. II Mise en evidence de filaments de type myosine dans les préparations. Cytobiologie 5: 139–45.Google Scholar
  17. Pollard, T.D. & Ito, S. (1970). Cytoplasmic filaments of Amoeba proteus I Role of filaments in consistency changes and movement. J. Cell. Biol. 46: 267–89.PubMedCrossRefGoogle Scholar
  18. Pollard, T.D., Shelton, E., Weihing, R.R. and Korn, E.D. (1970). Ultrastructural characterization of F-actin isolated from Acanthamoeba oastellanii and identification of cytoplasmic filaments as F-actin by reaction with rabbit heavy meromyosin. J. Mol. Biol. 50: 91–97.PubMedCrossRefGoogle Scholar
  19. Puchtler, H. (1956). Histochemical analysis of terminal bars. J. Histochem. Cytochem. 4: 439–40.Google Scholar
  20. Samson, F.E. (1971). Mechanism of axoplasmic transport. J. Neurobiol. 2: 347–60.PubMedCrossRefGoogle Scholar
  21. Scarpelli, D.G. & Craig, E.L. (1963). The fine localization of nucleoside triphosphatase activity in the retina of the frog. J. Cell.Biol. 17: 279–88.PubMedCrossRefGoogle Scholar
  22. Schliwa, M. & Bereiter-Hahn, J. (1973). Pigment movements in fish melanophores morphological and physiological studies III The effects of colchicine and vimblastine. Z. Zellforsch 147: 127–48.PubMedCrossRefGoogle Scholar
  23. Schroeder, T.E. (1968). Cytokinesis: filaments in the cleavage furrow. Exp. Cell. Res. 53: 272–318.PubMedCrossRefGoogle Scholar
  24. Selye, H. (1957). Lathyrism. Rev. Can. Biol. 16: 1–82.Google Scholar
  25. Simard-Duquesne, N. & Couillard, P. (1962). Ameboid movement. I Reactivation of glycerinated models of Amoeba proteus with adenosine triphosphate. Exp. Cell. Res. 28: 85–91.Google Scholar
  26. Sleigh, M. (1973). The biology of protozoa, P. 47. Edward Arnold, London.Google Scholar
  27. Steinberg, R.H. (1973). Scanning electron microscopy of the bull frog’s retina and pigment epithelium. Z. Zellforsch 143: 451–63.PubMedCrossRefGoogle Scholar
  28. Szollosi, D. (1970). Cortical cytoplasmic filaments of cleaving eggs A structural element corresponding to the contractile ring. J. Cell. Biol. 44: 192–209.PubMedCrossRefGoogle Scholar
  29. Tanzer, M.L. (1965). Experimental Lathyrism. Int. Rev. Connect. Tissue Res. 3: 91–112.PubMedGoogle Scholar
  30. Tice, L.M. & Barrnett, R.J. (1962). Fine structural localization of ATPases activity in heart muscle myofibrils. J. Cell. Biol. 15: 401–16.PubMedCrossRefGoogle Scholar
  31. Weis-Fogh, T. & Amos, W.B. (1972). Evidence for a new mechanism of cell motility. Nature 236: 301–04.PubMedCrossRefGoogle Scholar
  32. Wessels, N.K., Spooner, B.S., Ash, J.F., Bradley, M.O., Luduena, M.A., Taylor, E.L., Wrenn, J.T. & Yamada, K.M. (1971). Microfilaments in cellular and developmental processes. Science 171: 135–143.CrossRefGoogle Scholar
  33. Young, R.W. & Droz, B. (1968). The renewal of protein in retinal rods and cones. J. Cell. Biol. 39: 169–84.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • P. Couillard
    • 1
  1. 1.Département de BiologieUniversité de MontréalMontréal 101Canada

Personalised recommendations