Skip to main content

Approaches to the Study of Contractility in the Rods and Cones

  • Chapter
Vision in Fishes

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 1))

Abstract

In the present lecture, I shall try to give a necessarily complicated answer to a simple question: Is there an active contractile mechanism in the rods and cones of the animals like fish, which demonstrate retinomotor response? What is the available evidence for such a mechanism and how should we look for additional evidence?

“Cones and rods in serried ranks, Stand sentinel in retinal flanks; Back and forth they move to light, And finny life is gay and bright.”

P.K. Menon

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, M.A. (1971). Les réponses rétinomotrices, caractères et mécanismes. Vision Res. 11: 1225–1288.

    Article  PubMed  CAS  Google Scholar 

  • Ali, M.A., Latendresse, D. & Couillard, P. (1971). Colorabilité au TPA de la rétine de divers vértébres. Vision Res. 11: 1023–25.

    Article  PubMed  CAS  Google Scholar 

  • Anctil, M., Ali, M.A. & Couillard, P. (1973). Isolated retinal cells of some lower vertebrates. Rev. Can. Biol. 32: 107–19.

    PubMed  CAS  Google Scholar 

  • Arronet, N.I. (1973). Motile muscle and cell models. Consultants Bureau, N.Y. Translation of 1972, Russian edition.

    Google Scholar 

  • Bannister, L.H. & Tatchell, E.C. (1968). Contractility and the fibre systems of Stentor coeruleus. J. Cell. Sci. 3: 295.

    PubMed  CAS  Google Scholar 

  • Behnke, O. & Forer, A. (1967). Evidence for four classes of microtubules in individual cells. J. Cell. Sci. 2: 169–92.

    PubMed  CAS  Google Scholar 

  • Bendali, J.R. (1969). Muscles, molecules and movement. Heinemann, London.

    Google Scholar 

  • Berg, H.C. & Anderson, R.A. (1973). Bacteria swim by rotating their flagellar filaments. Nature 245: 380–82.

    Article  PubMed  CAS  Google Scholar 

  • Bluemink, J.G. (1971). Effects of cytochalasin B on surface contractility and cell junction formation during egg cleavage in Xenopus laevis. Cytobiology 3: 176–87.

    Google Scholar 

  • Carlson, F.D. & Wilkie, D.R. (1974). Muscle Physiology. Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Carter, S.B. (1972). Les cytochalasines, outil de recherche en Cytologie. Endeavour 31: 73–82.

    Google Scholar 

  • Couillard, P. & Ali, M.A. (1970). Sur une technique d’isolement des cellules visuelles chez les vertébrés à sang froid. An. ACFAS Suppl. 37: 6.

    Google Scholar 

  • Drujan, B.D. & Svaetichin, G. (1972). Characterization of different classes of isolated retinal cells. Vision Res. 12: 1777–84.

    Article  PubMed  CAS  Google Scholar 

  • Engström, K. (1963). Structure, organization and ultrastructure of the visual cells in the teleost family Labridae. Acta Zool. 44: 1–41.

    Article  Google Scholar 

  • Freed, J.J. & Ledowitz, M.M. (1970). The association of a class of saltatory movements with microtubules in cultured cells. J. Cell. Biol. 45: 334–54.

    Article  PubMed  CAS  Google Scholar 

  • Gicquaud, C.R. & Couillard, P. (1972). Préservation des mouvements dans le cytoplasme démémbrane d’Amoeba proteus. II Mise en evidence de filaments de type myosine dans les préparations. Cytobiologie 5: 139–45.

    Google Scholar 

  • Pollard, T.D. & Ito, S. (1970). Cytoplasmic filaments of Amoeba proteus I Role of filaments in consistency changes and movement. J. Cell. Biol. 46: 267–89.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T.D., Shelton, E., Weihing, R.R. and Korn, E.D. (1970). Ultrastructural characterization of F-actin isolated from Acanthamoeba oastellanii and identification of cytoplasmic filaments as F-actin by reaction with rabbit heavy meromyosin. J. Mol. Biol. 50: 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Puchtler, H. (1956). Histochemical analysis of terminal bars. J. Histochem. Cytochem. 4: 439–40.

    Google Scholar 

  • Samson, F.E. (1971). Mechanism of axoplasmic transport. J. Neurobiol. 2: 347–60.

    Article  PubMed  Google Scholar 

  • Scarpelli, D.G. & Craig, E.L. (1963). The fine localization of nucleoside triphosphatase activity in the retina of the frog. J. Cell.Biol. 17: 279–88.

    Article  PubMed  CAS  Google Scholar 

  • Schliwa, M. & Bereiter-Hahn, J. (1973). Pigment movements in fish melanophores morphological and physiological studies III The effects of colchicine and vimblastine. Z. Zellforsch 147: 127–48.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, T.E. (1968). Cytokinesis: filaments in the cleavage furrow. Exp. Cell. Res. 53: 272–318.

    Article  PubMed  CAS  Google Scholar 

  • Selye, H. (1957). Lathyrism. Rev. Can. Biol. 16: 1–82.

    CAS  Google Scholar 

  • Simard-Duquesne, N. & Couillard, P. (1962). Ameboid movement. I Reactivation of glycerinated models of Amoeba proteus with adenosine triphosphate. Exp. Cell. Res. 28: 85–91.

    Google Scholar 

  • Sleigh, M. (1973). The biology of protozoa, P. 47. Edward Arnold, London.

    Google Scholar 

  • Steinberg, R.H. (1973). Scanning electron microscopy of the bull frog’s retina and pigment epithelium. Z. Zellforsch 143: 451–63.

    Article  PubMed  CAS  Google Scholar 

  • Szollosi, D. (1970). Cortical cytoplasmic filaments of cleaving eggs A structural element corresponding to the contractile ring. J. Cell. Biol. 44: 192–209.

    Article  PubMed  CAS  Google Scholar 

  • Tanzer, M.L. (1965). Experimental Lathyrism. Int. Rev. Connect. Tissue Res. 3: 91–112.

    PubMed  CAS  Google Scholar 

  • Tice, L.M. & Barrnett, R.J. (1962). Fine structural localization of ATPases activity in heart muscle myofibrils. J. Cell. Biol. 15: 401–16.

    Article  PubMed  CAS  Google Scholar 

  • Weis-Fogh, T. & Amos, W.B. (1972). Evidence for a new mechanism of cell motility. Nature 236: 301–04.

    Article  PubMed  CAS  Google Scholar 

  • Wessels, N.K., Spooner, B.S., Ash, J.F., Bradley, M.O., Luduena, M.A., Taylor, E.L., Wrenn, J.T. & Yamada, K.M. (1971). Microfilaments in cellular and developmental processes. Science 171: 135–143.

    Article  Google Scholar 

  • Young, R.W. & Droz, B. (1968). The renewal of protein in retinal rods and cones. J. Cell. Biol. 39: 169–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Couillard, P. (1975). Approaches to the Study of Contractility in the Rods and Cones. In: Ali, M.A. (eds) Vision in Fishes. NATO Advanced Study Institutes Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0241-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0241-5_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0243-9

  • Online ISBN: 978-1-4757-0241-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics