Retinomotor Responses

  • M. A. Ali
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 1)


The term “Retinomotor responses” denotes the dispersion or concentration of the masking pigment within the retinal epithelial cells and the expansion and contraction of the rods and cones in response to changes in the ambient light (Fig. 1).


Retinal Epithelial Pigment Atlantic Salmon Brook Trout Visual Pigment Pink Salmon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, M.A. (1958). The ocular structure, retinomotor and photo-behavioural responses of juvenile Pacific salmon. Ph. D. Thesis, University of British Columbia, 102 p.Google Scholar
  2. Ali, M.A. (1959). The ocular structure, retinomotor and photo-behavioral responses of juvenile Pacific salmon. Can. J. Zool. 37: 965–996.CrossRefGoogle Scholar
  3. Ali, M.A. (1960). The effect of temperature on the juvenile Sockeye salmon retina. Can. J. Zool. 28: 169–171.CrossRefGoogle Scholar
  4. Ali, M.A. (1961a). Histophysiological studies on the juvenile Atlantic salmon (Salmo salar) retina. II. Responses to light intensities, wavelengths, temperatures, and continuous light or dark. Can. J. Zool. 39: 511–526.CrossRefGoogle Scholar
  5. Ali, M.A. (1961b). The correlation on photobehavioural and retinomotor responses in the Pacific salmon. In: Progress in Photobiology, Proc. 3rd Intl. Congr. Photobiol., edited by Christensen, B.C. and Buchmann, B., Elsevier, Amsterdam, 415–417.Google Scholar
  6. Ali, M.A. (1962a). Retinal responses in enucleated eyes of Atlantic salmon (Salmo salar). Rev. Can. Biol. 21: 7–15.PubMedGoogle Scholar
  7. Ali, M.A. (1962b); Influence of light intensity on retinal adaptation in Atlantic salmon (Salmo salar) yearlings. Can. J. Zool. 40: 561–570.CrossRefGoogle Scholar
  8. Ali, M.A. (1962c), Light preference of control, light- or dark-adapted sockeye salmon (Oncorhynchus nerka) juveniles. Am. Zool. 2: 385.Google Scholar
  9. Ali, M.A. (1963), Correlation of some retinal and morphological measurements from the Atlantic Salmon (Salmo salar). Growth 27: 57–76.Google Scholar
  10. Ali, M.A. (1964a). Stretching of retina during growth of salmon (Salmo salar). Growth 28: 83–89.PubMedGoogle Scholar
  11. Ali, M.A. (1964b). Retinomotor responses in the enucleated eyes of the brown bullhead (Ictalurus nebulosus) and the goldfish (Carassius auratus). Rev. Can. Biol. 23: 55–66.PubMedGoogle Scholar
  12. Ali, M.A. (1964c). Retinomotor responses of the goldfish (Carrassius auratus) to unilateral photic stimulation. Rev. Can. Biol. 23: 45–53.PubMedGoogle Scholar
  13. Ali, M.A. (1964d), Retinomotor responses and skin illumination in trout (Salmo irideus) and goldfish (Carassius auratus). Am. Zool. 4: 419.Google Scholar
  14. Ali, M.A. (1964e). Diurnal rhythm in the rates of oxygen consumption, locomotor and feeding activity of yearling Atlantic salmon (Salmo salar) under various light conditions. Proc. Indian Acad. Sci. 60: 249–263.Google Scholar
  15. Ali, M.A. (1964f). Über den Einfluss der Temperatur auf die Geschwindigkeit der retinomotorischen Reaktionen des Lachses (Salmo salar). Naturwissenschaften 51: 471.CrossRefGoogle Scholar
  16. Ali, M.A. (1964g). Retinomotor responses and skin illumination in trout (Salmo irideus) and goldfish (Carrassius auratus). Am. Zool. 4: 419.Google Scholar
  17. Ali, M.A. (1971). Les réponses rétinomotrices: caractères et mécanismes. Vision Res. 11: 1225–1288.PubMedCrossRefGoogle Scholar
  18. Ali, M.A. (1972). Action spectra of retinomotor and pupillary responses. Vision Res. 12: 1199.PubMedCrossRefGoogle Scholar
  19. Ali, M.A. et Anctil, M. (1968). Corrélation entre la structure rétinienne et l’habitat chez Stizostedion vitreum vitreum et S. canadense. J. Fish Res. Board Can. 25: 2001–2003.CrossRefGoogle Scholar
  20. Ali, M.A., Anetil, M. et Mohideen, H.M. (1968). Structure rétinienne et la vascularisation intraoculaire chez quelques poissons marins de la région de Gaspé. Can. J. Zool. 46: 729–745.PubMedCrossRefGoogle Scholar
  21. Ali, M.A., Copes, P. and Stevenson, W.R. (1961). Correlation of morphological and intra-ocular measurements in the Atlantic salmon (Salmo salar) yearling. J. Fish Res. Board Can. 18: 259–272.CrossRefGoogle Scholar
  22. Ali, M.A., M. Anetil et N. Raymond (1973) La rétine de quelques poissons marins du littoral brésilien. Revista Biol. 9: 101–114.Google Scholar
  23. Ali, M.A. and Crouzy, R. (1968). Action spectrum and quantal thresholds of retinomotor responses in the brook trout, Salvelinus fontinalis Mitchill. Z. vergl. Physiol. 59: 86–89.CrossRefGoogle Scholar
  24. Ali, M.A. and Hanyu, I, (1963). A comparative study of retinal structure in some fishes from moderately deep waters of the Western North Atlantic. Can. J. Zool. 41: 225–241.CrossRefGoogle Scholar
  25. Ali, M.A. and Hoar, W.S. (1959), Retinal responses of pink salmon associated with its downstream migration. Nature 184: 106–107.PubMedCrossRefGoogle Scholar
  26. Ali, M.A., Hubbard, R. and Wald, G. (1970). Scotopic visual pigments in the albino brook trout, Salvelinus fontinalis. Rev. Can. Biol. 29: 153–156.PubMedGoogle Scholar
  27. Ali, M.A. and H. Kobayashi (1967), Temperature: influence on the electroretinogram-flicker fusion frequency of the sunfish (Lepomis gibbosus L.). Rev. Can. Biol. 26: 341–345.PubMedGoogle Scholar
  28. Ali, M.A. and Kobayashi, H. (1968a). Electroretinogram of albino and pigmented brook trout Salvelinus fontinalis (Mitchill). Rev. Can. Biol. 27: 145–161.PubMedGoogle Scholar
  29. Ali, M.A. and Kobayashi, H. (1968b). Electroretinogram-flicker fusion frequency in albino trout. Experientia 24: 454.PubMedCrossRefGoogle Scholar
  30. Ali, M.A., Stevenson, W.R. and Press, J.S. (1961). Histophysiological studies on the juvenile Atlantic salmon (Salmo salar) retina. I. Rates of light- and dark-adaptation. Can. J. Zool. 39: 123–128.CrossRefGoogle Scholar
  31. Anctil, M. (1968). Intraocular vascular supply in some marine teleosts. Rev. Can. Biol. 27: 347–355.PubMedGoogle Scholar
  32. Anctil, M. (1969). Structure de la rétine chez quelques téléostéens marins du plateau continental. J. Fish. Res. Board Canada 26: 597–628.CrossRefGoogle Scholar
  33. Angelucci, A. (1884), Una nuova theoria sulla visione. Acad. Med. d. Roma. sed. 14 Juglio. (from Detwiler, 1943).Google Scholar
  34. Arcoleo, E. (1890). Osservazioni sperimentali sugli elementi contratti-li delia retina negli animali a sangue freddo. Ann. d’Ottalmologie 19: Fasc 3 and 4, p. 253–262.Google Scholar
  35. Arey, L.B. (1915). The occurrence and significance of photochemical changes in the vertebrate retina. An historical survey. J. Comp. Neurol. 25: 535–554.CrossRefGoogle Scholar
  36. Arey, B. (1916). The movements in the visual cells and retinal pigment of the lower vertebrates. J. Comp. Neurol. 26: 121–201.CrossRefGoogle Scholar
  37. Arey, L.B. (1919). A retinal mechanism of efficient vision. J. Comp. Neurol. 30: 343–353.CrossRefGoogle Scholar
  38. Arey, L.B. (1928). Visual cells and retinal pigment. In: Special cytology, Sec. 25, edited by Cowdry. v. 2, p. 887–926. Hoeber, New York.Google Scholar
  39. Ayres, W. and W. Kühne (1878). Ueber Regeneration des Sehpurpurs beim Säugethiere. Untersuch. aus d. Physiol. Inst. d. Univ. Heidelberg 2: 215–240.Google Scholar
  40. Bäck, I, Donner, K.O. and Reuter, T. (1965). The screening effect of the pigment epithelium on the retinal rods in the frog. Vision Res. 5: 101–111.PubMedCrossRefGoogle Scholar
  41. Bayliss, L.E., Lythgoe, R.J. and Tansley, K. (1936). Some new forms of visual purple found in sea fishes with a note on the visual cells of origin. Proc. R. Soc. Lond. Ser. B. 120: 95–113.CrossRefGoogle Scholar
  42. Beatty, D.D. (1966). A study of the succession of visual pigments in Pacific salmon (Oncorhynchus). Can. J. Zool. 44: 429–455.PubMedCrossRefGoogle Scholar
  43. Bimes, C., Guilhem, A., Peyraud, C. et Serfaty, A. (1966a). Mise en évidence d’un mécanisme humoral dans la dynamique rétinienne d’un poisson téléostéen: la carpe commune (Cyprinus carpio L.) C.R. Séances Soc. Biol. 160: 2470–2473.Google Scholar
  44. Bimes, C., Guilhem, A., Peyraud, C. et Serfaty, A. (1966b). Mise en évidence chez un poisson téléostéen: la carpe (Cyprinus carpio L.) de l’influence d’un broyat de rétine adaptée à l’obscurité sur la dynamique, in vitro, des photorécepteurs d’un oeil exposé à la lumière. C. R. Séances Acad. Sc. 263: 668–670Google Scholar
  45. Blaxter, J.H.S. and Jones, M.P. (1967). The development of the retina and retinomotor responses in the Herring. J. Mar. Biol. Ass. U.K. 47: 677–697.CrossRefGoogle Scholar
  46. Blaxter, J.H.S. (1968). Light intensity, vision and feeding in young plaice. J. Exp. Mar. Biol. Ecol. 2: 293–307.CrossRefGoogle Scholar
  47. Blaxter, J.H.S. (1969). Development: eggs and larvae. In: Fish Physiology, V. 3, Chap. 4, edited by Hoar, W.S. and Randall, D.J. Academic Press, New York, p. 177–252.Google Scholar
  48. Blaxter, J.H.S. (1970). Light: Fishes. In: Marine ecology, Vol. 1, Part 1 (Environmental factors). Edited by Kinne, O., Wiley-Interscience, London, p. 213–320.Google Scholar
  49. Blaxter, J.H.S. and Staines, M. (1970). Pure-cone retinae and retinomotor responses in larval teleosts. J. Mar. Biol. Ass. U.K. 50: 449–460.CrossRefGoogle Scholar
  50. Boll, F. (1877). Zur Anatomie und Physiologie der Retina. Arch. Anat. Physiol. 4: 783–787.Google Scholar
  51. Boll, F. (1881). Thesen und Hypothesen zur Licht und Farbenempfindung. Arch. Anat. Physiol.: 5–1.Google Scholar
  52. Braemer, W. (1957). Verhaltensphysiologische Untersuchungen am optischen Apparat bei Fischen. Z. vergl. Physiol. 39: 374–398.CrossRefGoogle Scholar
  53. Brett, J.R. and Ali, M.A. (1958). Some observations on the structure and photomechanical responses of the Pacific salmon retina. J. Fish. Res. Board Canada 15: 815–829.CrossRefGoogle Scholar
  54. Brown, K.T. (1968). The electroretinogram: its components and their origins. Vision Res. 8: 633–677.PubMedCrossRefGoogle Scholar
  55. Chiarini, P. (1904). Changements morphologiques que l’on observe dans la rétine des vertébrés par l’action de la lumière et de l’obscurité. Arch. Ital. Biol. 42: 303–322.Google Scholar
  56. Crouzy, R. and Ali, M.A. (1965). Données photométriques spectrales sur l’oeil de la truite albinos et sur son pigment scotopique. C.R. Acad. Sc. Paris. 261: 4509–4512.Google Scholar
  57. Crouzy, R. et Ali, M.A. (1966). Relation entre la sensibilité élec-trorétinographique et le spectre d’absorption du pigment visual scotopique chez le poisson rouge. Nombre minimum de quanta absorbés. Bull. Mus. Nat. Hist. Naturelle, 2e série, 38: 730–743.Google Scholar
  58. Czerny, V. (1867). Ueber Blendung der Netzhaut durch Sonnenlicht. Stzungen Akad. Wiss. Wien, Math. Naturwiss. Kl., 56: 409–428.Google Scholar
  59. Dartnall, H.J.A. and Lythgoe, J.N. (1965). The clustering of fish visual pigments around discrete spectral positions and its bearing on chemical structure. In: “Colour Vision”, edited by de Reuck, A.V.S. and Knight, J. Churchill, London, p. 3–26.Google Scholar
  60. Detwiler, S.R. (1943). Vertebrate photoreceptors. MacMillan, New York.CrossRefGoogle Scholar
  61. Eberle, H. (1968). Zapfenbau, Zapfenlange und chromatische Aberration im Auge von Lebistes retioulatus Peters (Guppy). Zool. Jb. Physiol. 74: 121–154.Google Scholar
  62. Engelmann, T.W. (1885). Über Bewegungen der Zapfen und Pigmentzellen der Netzhaut unter dem Einfluss des Lichtes und des Nervensystems. Arch. ges. Physiol. 35: 498–508.CrossRefGoogle Scholar
  63. Engström, K. (1963a). Studies on teleostean visual cells. Ake Nyblom & Co. Stockholm. 16 p.Google Scholar
  64. Engström, K. (1963b). Cone types and cone arrangements in teleost retinae. Acta Zool. 44: 179–243.CrossRefGoogle Scholar
  65. Engström, K. and Rosstorp, E. (1963). Photomechanical responses in different cone types of Leuoiscus rutilus. Acta Zool. 19: 145–160.CrossRefGoogle Scholar
  66. Exner, S. and Januschke, H. (1906). Die Stäbchenwanderung im Auge von Abramis brama bei Lichtveränderungen. Ber. d. K. K. Akad. d. Wiss. zu Wien, Math.-Natur. Kl. 115: 269–280.Google Scholar
  67. Fujita, H. (1911). Pigmentbewegung und Zapfenkontraktion im Dunkelauge des Frosches bei Einwirkung verschiedener Reize. Arch. vergl. Ophthalmol. 2: 164–179.Google Scholar
  68. Gad, J. (1894). Der Energieumsatz in der Retina. Arch. Anat. Physiol. (Physiol. Abt.), p. 491–501.Google Scholar
  69. Garten, S. (1907). Die Veränderungen der Netzhaut durch Licht. Graefe-Saemisch Handbuch der gesamten Augenheilkunde, Leipzig, V. 2, chapt. 12, p. 250–380.Google Scholar
  70. Genderen-Stort, A.G.H. van (1886). Über Form und Ortsveränderung der Elemente in der Sehzellenschicht nach Beleuchtung. Bericht 18. Versamm. deutsche Ophthalmol. Gesell. Heidelberg, p. 43–49.Google Scholar
  71. Girsa, I.I. (1967). Specific retinomotor reaction features of the retina of the eye when fish are being lured by light (Russian). Vopr. Ikhtiol. 7: 540–546.Google Scholar
  72. Gramoni, R. and Ali, M.A. (1970). Changes in the ERG components of the landlocked salmon (Salmo salar ouananiche, McCarthy) during dark- and light-adaptation. Rev. Can. Biol. 29: 35–47.PubMedGoogle Scholar
  73. Hagins, W.A. and Liebman, P.A. (1962). Light-induced pigment migration in the squid retina. Biol. Bull. 123–498.Google Scholar
  74. Hanawa, I. (1956). Photo-metabolism of the isolated outer-segments of rods. Jap. J. Physiol. 6: 218–225.CrossRefGoogle Scholar
  75. Hanawa, I., Tanaka, S. and Nakano, H. (1959). Free amino acids in the choroid and effects of some metabolites on the retinal pigment-migration. Jap. J. Physiol. 9: 56–62.CrossRefGoogle Scholar
  76. Hanyu, I. (1962). Intraocular vascularization in some fishes. Can. J. Zool. 40: 87–106.CrossRefGoogle Scholar
  77. Hanyu, I. and Ali, M.A. (1962). Intra-sub-specific variation in retinal structure in Sebastes mavinus mentella. Nature, 196: 554–556.PubMedCrossRefGoogle Scholar
  78. Hanyu, I. and Ali, M.A. (1963). Flicker fusion frequency of electroretinogram in light-adapted goldfish at various temperatures. Science 140: (3567): 662–663.CrossRefGoogle Scholar
  79. Hanyu, I. and Ali, M.A. (1964). Electroretinogram and its flicker fusion frequency at different temperatures in light-adapted salmon (Salmo salar). J. Cell. Comp. Physiol. 63: 309–322.CrossRefGoogle Scholar
  80. Harosi, F.I. and MacNichol, E.F. (1974). Visual pigments of goldfish cones. Spectral properties and dichroism. J. Gen. Phys. 63: 279–304.CrossRefGoogle Scholar
  81. Herzog, H. (1905). Experimentelle Untersuchungen zur Physiologie der Bewegungsvorgänge in der Netzhaut. Arch. Anat. Physiol. (Physiol. Abt.) 5/6: 413–464.Google Scholar
  82. Hoglund, G. and Struwe, G. (1970). Pigment migration and spectral sensitivity in the compound eye of moths. Z. vergl. Physiol. 67: 229–237.CrossRefGoogle Scholar
  83. Hoglund, G., Langer, H., Struwe, G. and Thorell, B. (1970). Spectral absorption by screening pigment granules in the compound eyes of a moth and a wasp. Z. vergl. Physiol. 67: 238–242.CrossRefGoogle Scholar
  84. Holst, E. von (1935). Über den Lichtrückenreflex bei Fischen. Pubbl. Staz. Zool. Napoli 15: 143–158.Google Scholar
  85. Hongo, I., Hara, T., Sekoguti, Y., Hara, R., Kato, M. and Oki, I. (1958). Studies on the mechanism of the retinal photoreception by the use of phosphorus-32. Proc. 1st. UNESCO Intl. Conf. Sc. Res. 4: 90–99.Google Scholar
  86. Hongo, I. (1935). Die Wirkung monochromatischen Lichtes auf die motorischen Elemente der Knochenfischnetzhaut. Z. vergl. Physiol. 22: 293–297.Google Scholar
  87. John, K.R. and Haut, M. (1964). Retinomotor cycles and correlated behavior in the teleost Astyanax mexicanas (Fillipi). J. Fish. Res. Board Can. 21: 591–595.CrossRefGoogle Scholar
  88. Keenleyside, M.H.A. (1955). Some aspects of the schooling behaviour of fish. Behaviour 8: 183–248.CrossRefGoogle Scholar
  89. Kobayashi, H. (1957). Notes on retinomotor phenomena in some fishes under various light conditions. J. Shimonoseki Coll. Fish. 7: 169–177.Google Scholar
  90. Kobayashi, H. and Ali, M.A. (1971). Electroretinographic determination of spectral sensitivity in albino and pigmented brook trout (Salvelinus fontinalis, Mitchell). Can. J. Physiol. Pharmacol. 49: 1030–1037.PubMedCrossRefGoogle Scholar
  91. Kolmer, W. (1909). Über einen sekretartigen Bestandteil der Stäbchen-Zapfenschicht der Wirbeltierretina. Vorläufige Mitteilung. Arch. f. d. ges. Physiol. 129: 35–45.CrossRefGoogle Scholar
  92. Kramer, E. and Ali, M.A. (1965). A new method of recording fish activity continuously over long periods. Am. Zool. 5: (2) 232.Google Scholar
  93. Kuchnow, K.P. (1970). Threshold and action spectrum of the elasmo-branch pupillary response. Vision Res. 10: 955–964.PubMedCrossRefGoogle Scholar
  94. Kühne, W. (1877). Über den Sehpurpur. Untersuch. Physiol. Inst. Univ. Heidelberg, 1: 235–337.Google Scholar
  95. Kühne, W. (1878). Fortgesetzte Untersuchungen über die Retina und die Pigmente des Auges. Untersuch. Physiol. Inst. Univ. Heidelberg, 2: 89Google Scholar
  96. Kühne, W. (1879). Chemische Vorgänge in der Netzhaut. Hermann’s Handb. der Physiologie, Leipzig 3: 235–337.Google Scholar
  97. Lederer, R. (1908). Veränderungen an den Stäbchen der Froschnetzhaut unter Einwirkung von Licht und Dunkelheit. Centralbl. Physiol. 22(24): 762–764.Google Scholar
  98. Liebman, P.A., Carroll, S. and Laties, A. (1969). Spectral sensitivity of retinal screening pigment migration in the frog. Vision Res. 9: 377–384.PubMedCrossRefGoogle Scholar
  99. Loukashkin, A.S. and Grant, N. (1959). Behavior and reactions of the Pacific sardine, Sardinops caevula (Girard), under the influence of white and colored lights and darkness. Proc. Calif. Acad. Sci. 29: 509–548.Google Scholar
  100. Lyall, A.H. (1957). The growth of the trout retina. Q. J. Microsc. Sci. 98: 101–110.Google Scholar
  101. Marks, W.B. (1965). Visual pigments of single goldfish cones. J. Physiol. 178: 14–32.PubMedGoogle Scholar
  102. Morano, F. (1872). Die Pigmentschicht der Netzhaut. Arch. Mikros. Anat. 8: 4–81.Google Scholar
  103. Mühlmann, D. (1967). Untersuchungen zum Ablauf der Dunkeladaptation bei Fischen. II. ERG beim Flussbarsch (Perca fluviatilis, L). Z. vergl. Physiol. 55: 134–144.CrossRefGoogle Scholar
  104. Müller, H. (1856). Anatomisch-physiologische Untersuchungen über die Retina bei Menschen und Wirbelthieren. Z. Wiss. Zool. 8: 1–122.Google Scholar
  105. Müller, H. (1952). Bau und Wachstum der Netzhaut des Guppy (Lebistes veticulatus). Zool. Jahrb. Physiol. 63: 276–324.Google Scholar
  106. Müller, H. (1954). Die Dundeladaptation beim Guppy (Lebistes veticulatus P.). Z. vergl. Physiol. 37: 1–18.CrossRefGoogle Scholar
  107. Müller-Limroth, W. (1959). Electrophysiology des Gesichtssinnes. Springer-Verlag, Berlin, p. 331.CrossRefGoogle Scholar
  108. Munk, O. (1959). Scientific results of the Danish deep-sea expedition round the world 1950–52. Galathea Report 3: 79–86.Google Scholar
  109. Munk, O. (1964a). The eyes of three benthic deep-sea fishes caught at great depths. Galathea Report 7: 137–149.Google Scholar
  110. Munk, O. (1964b). The eyes of some ceratioid fishes. Dana Report 61.Google Scholar
  111. Munk, O. (1966). Ocular anatomy of some deep-sea teleosts. Dana Report 70.Google Scholar
  112. Munk, O. (1969). On the visual cells of some primitive fishes with particular regard to the classification of rods and cones. Vidensk. Meddr. Dansk. Naturh. Foren 132: 25–30.Google Scholar
  113. Muntz, W.R.A. and Northmore, D.P.M. (1970). Vision and visual pigments in a fish, Scardinus erythrophthalmus (The rudd). Vision Res. 10: 281–298.PubMedCrossRefGoogle Scholar
  114. Nicol, J.A.C. (1963). Some aspects of photoreception and vision in fishes. Adv. Mar. Biol. 1: 171–208.CrossRefGoogle Scholar
  115. Nicol, J.A.C. and Zyznar, E. (1973). The Tapetum lucidum in the eye of the big-eye Pviaoanthus arenatus Cuvier. J. Fish. Biol. 5: 519–522.CrossRefGoogle Scholar
  116. Northmore, D.P.M. and Muntz, W.R.A. (1970). Electroretinogram determinations of spectral sensitivity in a teleost fish adapted to different daylengths. Vision Res. 10: 799–816.PubMedCrossRefGoogle Scholar
  117. Olla, L. and Marchioni, W. (1968). Rhythmic movements of cones in the retina of Bluefish, Pomatomus saltatrix, held in constant darkness. Biol. Bull. 135: 530–536.CrossRefGoogle Scholar
  118. Pergens, E. (1899). Über Vorgänge in der Netzhaut bei farbiger Beleuchtung gleicher Intensität. Z. Augenheilk. 2: 125–141.Google Scholar
  119. Peyraud, C.M. (1965). Recherches sur la régulation des mouvements respiratoires chez quelques téleostéens: Analyse d’un réflexe opto-respiratoire. Thèse, Fac. des Sciences, Université de Toulouse, p. 258.Google Scholar
  120. Peyraud, C.M. (1966). Contribution à l’étude de la dynamique des pigments et des photorécepteurs rétiniens chez la carpe (Cypvinus carpio L.). C.R. Acad. Sc. Paris 263: 65–67.Google Scholar
  121. Pickford, C.E. and Atz, J.W. (1957). The physiology of the pituitary gland of fishes. New York Zoological Society, N.Y.Google Scholar
  122. Scharrer, E. (1930). Über Hell — und Dunkelstellung im Fischauge bei einseitiger Belichtung. Z. vergl. Physiol. 11: 104–106.Google Scholar
  123. Stell, W.K. (1967). The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in the goldfish retina. Am. J. Anat. 120: 401–424.CrossRefGoogle Scholar
  124. Stell, W.K. (1972). The structure and morphologic relations of rods and cones in the retina of the spiny dogfish Squalus. Comp. Biochem. Physiol. 42A: 141–151.CrossRefGoogle Scholar
  125. Stell, W.K., Harosi, F.I. and Lightfoot, D.O. (1974). Cones and the color-coding of cone-horizontal cell contacts in the goldfish retina. The Association for Research in Vision and Ophthalmology. Abst. 3, p. 47.Google Scholar
  126. Studnitz, G. von (1937). Die retinale Säurebildung. Pflüg. Arch. ges Physiol. 238: 802–813.CrossRefGoogle Scholar
  127. Studnitz, G. von (1952). Mikroskopische Untersuchungen an der Netzhaut des Wirbeltierauges. Mikrokosmos 42: 58–62.Google Scholar
  128. Studnitz, G. von (1952). Physiologie des Sehens. 2nd ed. Akademische Verlagsgesellschaft, Leipzig, p. 493.Google Scholar
  129. Tamura, T. (1957). On the relation between the intensity of illumination and the shifting of cones in the fish retina. Bull. Jap. Soc. Sci. Fish. 22: 742–746.CrossRefGoogle Scholar
  130. Vilter, V. (1942). Régulation sympathico-hypothysaire de migrations pigmentaires dans la rétine de l’anguille (Anguilla vulgaris L.). Arch. Phys. Biol. 16(Suppl): 6–8.Google Scholar
  131. Vilter, V. (1946). Déterminisme intrinsèque de migrations pigmentaires dans la rétine. C.R. Soc. Biol. Paris 140: 277–278.Google Scholar
  132. Vilter, V. and Thibault, C. (1948). Etude du mécanisme photoadaptif du pigment rétinien mélanique chez la carpe par les éclairements unilatéraux. C.R. Séances Soc. Biol. 142: 290–292.Google Scholar
  133. Wald, G. (1941). The visual systems of euryhaline fishes. J. Gen. Physiol. 25: 235–245.PubMedCrossRefGoogle Scholar
  134. Walls, G.L. (1928). An experimental study of the retina of the brook lamprey, Entosphenus appendix (De Kay). J. Comp. Neurol. 46: 465–473.CrossRefGoogle Scholar
  135. Walls, G.L. (1942). The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science Bull. 19, 785 p. Bloomfield Hills, Michigan.CrossRefGoogle Scholar
  136. Weidemann, H.L. (1966). Der Einfluss quantengleicher Farblichter auf die Retinomotorik dreier Zapfentypen in der Netzhaut des Guppy (Lebistes vetioulatus Peters). Diss. Mathematisch-Naturwissenschaftliche Fakultät der Georg-August-Universität Göttingen, Allemagne.Google Scholar
  137. Wigger, H. (1937). Versuche zur Kausalanalyse der retinomotorischen Erscheinungen. Pflüg. Arch. ges Physiol. 239: 215–246.Google Scholar
  138. Wunder, W. (1926). Die Bedeutung des Adaptationszustandes für das Verhalten der Sehelemente und des Pigmentes in der Netzhaut von Knochenfischen. Z. vergl. Physiol. 3: 595–614.CrossRefGoogle Scholar
  139. Zyznar, E.S. and Ali, M.A. (1974). An interpretative study of the Organization of the visual cells in the tapetum lucidum of Stizostedion. Can. J. Zool. (in press)Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • M. A. Ali
    • 1
  1. 1.Département de BiologieUniversité de MontréalMontréal 101Canada

Personalised recommendations