Accommodative Mechanisms in Aquatic Vertebrates

  • Jacob G. Sivak
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 1)


Accommodation in fishes involves two problems concerning interdependent and, yet at the same time, separate optical entities. These entities are: a) the actual mechanism of accommodation (i.e. the dynamic response which gives the eye the capacity to vary its focal power) and b) the refractive states of the eye (i.e. the degree to which the focal plane coincides or fails to coincide with the retina) which exist concurrently with a). Investigations of more than a century have gone a long way toward resolving the first problem. That is not to say that there do not exist any more difficulties and puzzles that are yet to be worked out. The second problem has resisted solution more tenaciously.


Refractive Error Refractive State Ciliary Muscle Lemon Shark Aquatic Vertebrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baylor, E.R. and Shaw, E. (1962). Refractive error and vision in fishes. Science 136: 157–158.PubMedCrossRefGoogle Scholar
  2. Beer, T. (1894). Die Accommodation des Fishauges. Pflügers Arch. Physiol. 58: 523–650.CrossRefGoogle Scholar
  3. Charmen, W.N. and Tucker, J. (1973). The optical system of the goldfish eye. Vision Res. 13: 1–8.CrossRefGoogle Scholar
  4. Dalrymple, J. (1838). Some acount of a peculiar structure in the eyes of fishes. Mag. Nat. Hist. N. S. 2: 136–141.Google Scholar
  5. Duke-Elder, S. (1958). System of Ophthalmology. Vol. I. The eye in Evolution. Henry Kimpton, London.Google Scholar
  6. Franz, V. (1931). Die Akkommodation des Selachierauges und seine Abblendrungsapparate, nebst Befunden an der Retina. Zool. Jahrb., Abt. Allegm. Zool., Physiol. Tiere 49: 323–462.Google Scholar
  7. Franz, V. (1932). Auge und Akkomodation von Petromyzon (Lampreta) fluvialilis L. Zool. Jahrb., Abt. Allegm. Zool. Physiol. Tiere 52: 118–178.Google Scholar
  8. Franz, V. (1934). Vergleichende Anatomie des Wirbeltierauges. In Handbuch der Vergleichende Anatomie der Wirbeltiere, edited by Bolk, Göppert, Kallius, Lubosch, Bd. 2, III Höhere Sinnesorgane, pp. 989–1292, Urban und Schwartzenberg, Berlin.Google Scholar
  9. Glickstein, M. and Millodot, M. (1970). Retinoscopy and eye size. Science 168: 605–606.PubMedCrossRefGoogle Scholar
  10. Von Haller, A. (1794). Mémoire sur les yeux de quelques poissons. Hist. Acad. r. Sci. Paris 1762, Mém. Math. Phy. 76–95. (cited by Munk, O. (1973). Early notions of dynamic accommodatory devices in Teleosts. Vidensk. Medd. Dan. Naturhist. Foren. 136: 7–28.Google Scholar
  11. Von Hess, C. (1912). Vergleichende Physiologie des Gesichtssinnes. In Handbuch der Vergleichenden Physiologie, edited by Winterstein, Bd. 4: pp. 1–290, Gustav Fisher, Jena.Google Scholar
  12. Kimura, K. and Tamura, T. (1966). On the direction of the lens movement in the visual accommodation of teleostean eyes. Bull. Jap. Soc. Fish. 32: 112–116.CrossRefGoogle Scholar
  13. Massof, R.W. and Chang, F.W. (1972). A revision of the rat schematic eye. Vision Res. 12: 793–796.PubMedCrossRefGoogle Scholar
  14. Meader, R.G. (1936). Accommodation and its reflex pathways in the teleosts. Yale, J. Biol. Med. 8: 511–522.Google Scholar
  15. Meyer, D.L. and Schwassmann, H.O. (1970). Electrophysiological methods for determination of refractive state in fish eyes. Vision Res. 10: 1301–1303.PubMedCrossRefGoogle Scholar
  16. Munk, O. (1971). On the occurrence of two lens muscles within each eye of some teleosts. Vidensk. Medd. Dans. Naturhist, Foren. 134: 7–19.Google Scholar
  17. Munk, O. (1973). Early notions of dynamic accommodatory devices in teleosts. Vidensk. Medd. Dan. Naturhist. Foren. 136: 7–28.Google Scholar
  18. Pumphrey, R.J. (1961). Concerning Vision. In: The Cell and the organism, edited by Ramsay and Wigglesworth, pp. 193–208. Cambridge University Press, London.Google Scholar
  19. Rochon-Duvigneaud, A. (1943). Les Yeux et la Vision des Vertébrés, Masson, Paris.Google Scholar
  20. Rochon-Duvigneaud, A. and Verrier, M.L. (1927). Sur l’existence des poches séreuses dans l’oeil et l’orbite des Téléosteens. C. r. hebd. Séances Acad. Sci. 184: 539–542.Google Scholar
  21. Schwassmann, H.O. and Meyer, D.L. (1971). Refractive state and accommodation in the eye of three species of Paralabrax (Ser-ranidae, Pisces). Vidensk. Medd. Dan. Naturhist. Foren. 134: 103–108.Google Scholar
  22. Sicherer, O. (1911). Untersuchungen über die Refraktion der Augen der Süsswasserfische. Arch. Vergl. Ophthal. 1: 481–488.Google Scholar
  23. Sivak, J.G. (1973). Interrelation of feeding behavior and accommodative lens movements in some species of North American freshwater fishes. J. Fish. Red. Board Can. 30: 1141–1146.CrossRefGoogle Scholar
  24. Sivak, J. and Howland, H.C. (1973). Accommodation in the northern rock bass (Ambloplites rupestris rupestris) in response to natural stimuli. Vision Res. 13: 2059–2064.PubMedCrossRefGoogle Scholar
  25. Sivak, J.G. (1974a). The refractive error of the fish eye. Vision Res. 14: 209–213.PubMedCrossRefGoogle Scholar
  26. Sivak, J.G. (1974b). Accommodation of the lemon shark eye (Negaprion brevirostris). Vision Res. 14: 215–216.PubMedCrossRefGoogle Scholar
  27. Sivak, J.G. (1974c). Accommodative lens movements in fishes: lateral vs. rostral-caudal motion. Abstract in Program of the 54th Annual Meeting of the American Society of Ichthyology and Herpetology, National Museum of Natural Sciences, Ottawa, (in press).Google Scholar
  28. Somiya, H. and Tamura, T. (1973). Studies on the visual accommodation in fishes. Jap. J. Ichthyol. 20: 193–206.Google Scholar
  29. Tamura, T. (1957). A study of visual perception in fish especially on resolving power and accommodation. Bull. Jap. Soc. Sci. Fish. 22: 536–557.CrossRefGoogle Scholar
  30. Tamura, T. and Wisby, W.J. (1963). The visual sense of pelagic fishes especially the visual axis and accommodation. Bull. Mar. Sci. Gulf Caribb. 13: 433–448.Google Scholar
  31. Tansley, K. (1965). Vision in Vertebrates. Chapman and Hall, London.Google Scholar
  32. Verrier, M.L. (1927). Sur la réfraction statique de l’oeil chez les poissons. C. R. Hebd. Seances Acad. Sci. 185: 1070–1072.Google Scholar
  33. Verrier, M.L. (1928). Recherches sur les yeux et la vision des poissons. Bull. Biol. Fr. Belg. suppl. XI: pp. 1–222.Google Scholar
  34. Verrier, M.L. (1930). Contribution à l’étude de la vision chez les selaciens. Annls. Sci. Nat. Zool. 13: 5–54.Google Scholar
  35. Verrier, M.L. (1934). La réfraction de l’oeil des poissons. Bull. Soc. Zool. Fr. 59: 333–338.Google Scholar
  36. Verrier, M.L. (1948). La vision des vertébrés et les théories de la vision. Année Biol. Ser. 324: 209–238.Google Scholar
  37. Wallace, W.C. (1834). Discovery of a muscle in the eye of fishes. Am. J. Sci. Arts. 26: 394.Google Scholar
  38. Walls, G.L. (1942). The Vertebrate eye and its adaptive radiation, Cranbrook Institute of Science, Bloomfield Hills, Michigan.CrossRefGoogle Scholar
  39. Wang, C.S.T. (1948). The Eye of fishes with special reference to pigment migration. Ph.D. dissertation, Cornell University.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Jacob G. Sivak
    • 1
  1. 1.School of OptometryUniversity of WaterlooWaterlooCanada

Personalised recommendations