Chemical Neurotransmission in the Retina of the Teleost Eugerres Plumieri

  • Boris D. Drujan
  • M. Jodlowsky
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 1)


The transfer of information from one cell to another is mediated by the liberation of a small quantity of a chemical transmitter substance. This compound diffuses to the post-synaptic membrane where it combines with specific receptor sites, and initiates changes in the ionic permeability. The involved ions depend on the nature of the transmitter compound, and of the receptor sites for a particular synapsis. Finally, the transmitter substance is removed by specific mechanisms, and the whole procedure may repeat itself many times. This process we call chemical neurotransmission.


Ganglion Cell AChE Activity Amacrine Cell Horizontal Cell Optic Tectum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames III A. and Pollen, D.A. (1969). Neurotransmission in central nervous tissue: a study of isolated rabbit retina. J. Neurophysiol. 32: 424–442.PubMedGoogle Scholar
  2. Ciarletta, E. and Drujan, B.D. (1973). Results non published yet. Crawford, J.M. and Curtis, D.R. (1964). The excitation and depression of mammalian cortical neurones by amino acids. Br. J. Pharmacol. 23: 313–329.Google Scholar
  3. Curtis, D.R. and Johnston, G.A.R. (1970). Amino Acid Transmitters. Handbook of Neurochemistry, edited by A. Lajtha, Vol. 4, p. 115–134, Plenum Press, New York.Google Scholar
  4. Curtis, D.R. and Watkins, J.C. (1965). The pharmacology of amino acids related to GABA. Pharmacol. Rev. 17: 347–391.PubMedGoogle Scholar
  5. Dowling, J.E. (1967). The site of visual adaptation. Science, 155: 273–279.PubMedCrossRefGoogle Scholar
  6. Drujan, B.D. and Ciarletta, E. (1973). The effect of light and darkness on the metabolism of adrenaline, y-aminobutyrate, glutamate, and aspartate in the visual system of the teleost Eugerres plumieri. Proc. 4th. Int. Congr. Neurochem. p. 318.Google Scholar
  7. Drujan, B.D. and Diaz Borges, J.M. (1972). Adrenaline induced changes in the metabolism of glycogen in the teleost retina. J. Fish. Biol. 4: 79–85.CrossRefGoogle Scholar
  8. Drujan, B.D., Diaz Borges, J.M. and Alvarez N. (1965a). Relationship between the contents of adrenaline, noradrenaline and dopamine in the retina and its adaptional state. Life Sciences, 4: 473–477.PubMedCrossRefGoogle Scholar
  9. Drujan, B.D., Diaz Borges, J.M. and Alvarez N. (1965b). The possible participation of catecholamines in the retinal inhibitory mechanism. Proc. 23rd. Int. Congr. Physiol. Sciences, 839.Google Scholar
  10. Drujan, B.D. and Svaetichin, G. (1972). Characterization of different different classes of isolated retinal cells. Vision Res. 12: 1777–1784.PubMedCrossRefGoogle Scholar
  11. Eränkö, O. (1967). Histochemistry of nervous tissues: Catecholamines and Cholinesterases. Annu. Rev. Pharmacol. 7: 203–222.PubMedCrossRefGoogle Scholar
  12. Francis, C.M. (1953). Cholinesterase in the retina. J. Physiol. 120: 435–439.PubMedGoogle Scholar
  13. Falk, B., Laties A.M. and Jacobowitz, D. (1966a). Histochemical studies of monoamine containing cells in the monkey retina. J. Histochem. Cytochem. 14: 823–824.Google Scholar
  14. Falk, B., Laties, A.M. and Jacobowitz, D. (1966b). A comparative study of the autonomic innervation of the eye in monkey, cat and rabbit. Anat. Record, 156: 383–395.CrossRefGoogle Scholar
  15. Graham, L.T.Jr., Lolley, R.N. and Baxter, C.F. (1968). Effect of illumination upon levels of GABA and glutamic acid in frog retina in vivo. Fed. Proc, 27: 463.Google Scholar
  16. Graham, L.T.Jr., Baxter, C.F. and Lolley, R.N. (1970). In vivo influence of light and darkness on the GABA system in the retina of the frog (Rana pipiens). Brain. Res. 20: 379–388.PubMedCrossRefGoogle Scholar
  17. Häggendal, J. and Malmfors, T. (1965). Identification and cellular localization of the catecholamines in the retina and the choroid of the rabbit. Acta Physiol. Scand. 64: 58–66.CrossRefGoogle Scholar
  18. Hecht, S. (1937). Rods, cones and the chemical basis of vision. Physiol. Rev. 17: 239–290.Google Scholar
  19. Kishida, K. and Naka, K.I. (1967). Amino acids and the spikes from the retinal ganglion cells. Science, 156: 648–650.PubMedCrossRefGoogle Scholar
  20. Kojima, K., Mizumo, K. and Miyazaki, M. (1958). Biochemical studies of the ocular melanine. Nature, (London)181: 1200.CrossRefGoogle Scholar
  21. Kramer, S.Z., Sherman, P.A. and Seifter, J. (1967). Effects of gamma aminobutyric acid (GABA) and sodium L-glutamate on the visual system and egg of chicks. Int. J. Neuropharmacol., 6: 463–472.PubMedCrossRefGoogle Scholar
  22. Krnjevic, K. (1964). Micro-iontophoretic studies on corticalvneurones. Int. Rev. Neurobiol., 7: 41–98.CrossRefGoogle Scholar
  23. Kuriyama, K., Sisken, B., Haber, B. and Roberts, E. (1968). The γ-aminobutyric acid system in rabbit retina. Brain Research 9: 165–168.PubMedCrossRefGoogle Scholar
  24. Lam, D.M.K. (1972). The byosynthesis and content of GABA in the gold fish retina. J. Cell.Biol.54: 225–231.PubMedCrossRefGoogle Scholar
  25. Lam, D.M.K. (1972). Biosynthesis of acetylcholine in turtle photoreceptors. Proc. Nat. Acad. Sci. U.S.A., 69: 1987–1991.CrossRefGoogle Scholar
  26. Lam, D.M.K. and Steinman, L. (1971). The uptake of γ-3H aminobutyric acid in the goldfish retina. Proc. Nat. Acad. Sci. U.S.A.68: No. 11, 2777–2781.CrossRefGoogle Scholar
  27. Negishi, K., Sugawara, K. and Kato, S. (1973). Supl. Anais da Academia Brasileira de Ciencias. (In press)Google Scholar
  28. Nichols, C.W., Jacobowitz, D. and Hottenstein, M. (1967). The influence of light and dark on the catecholamine content of the retina and choroid. Invest. Ophthalmol., 6: 642–646.PubMedGoogle Scholar
  29. Nichols, C.W. and Koelle, G.B. (1967). Acetylcholinesterase: Method for demonstration in amacrine cells of rabbit retina. Science, 155: 477–478.PubMedCrossRefGoogle Scholar
  30. Nichols, C.W. and Koelle, G.B. (1968). Comparison of the localization of acetylcholinesterase and non-specific Cholinesterase activities in mammalian and avian retinas. J. Comp. Neurol.133: 1–8.PubMedCrossRefGoogle Scholar
  31. Noell, W.K. (1959). The visual cell, electric and metabolic manifestations of its life processes. J. Ophthalmol.48: 347–370.Google Scholar
  32. Roberts, E. (1963). Some thoughts about GABA in the nervous system. Nutr. Rev.21: 161,165.Google Scholar
  33. Roberts, E. and Kuriyama, K. (1968). Biochemical-Physiological Correlations in studies of the γ-aminobutyric acid system. Brain Research 8: 1–35.PubMedCrossRefGoogle Scholar
  34. Sholes, N.W. and Roberts, E. (1964). Pharmacological studies of the optic system of the chick: Effect of GABA and pentobarbital. Biochem. Pharmacol.13: 1319–1329.CrossRefGoogle Scholar
  35. Starr, M.S. and Voaden, M.J. (1972). The uptake of 14C-GABA by the isolated retina of the rat. Vision Res.12: 549–557.PubMedCrossRefGoogle Scholar
  36. Stell, W.K. (1967). The structure and relationships of horizontal cells and photoreceptor — bipolar synaptic complexes in goldfish retina. Am. J. Anat.121: 401.PubMedCrossRefGoogle Scholar
  37. Svaetichin, G., Negishi, K., Fatenchand, R., Drujan, B.D. and Selvin de Testa, A. (1965a). Nervous function based on interactions between neuronal and non-neuronal elements. In: Progress in Brain Research, 15. Biology of Neuroglia, p. 243. Edited by E.D.P. de Robertis and R. Carrera, Elsevier, Amsterdam.CrossRefGoogle Scholar
  38. Svaetichin, G., Negishi, K. and Fatenchand, R. (1965b). Cellular mechanisms of a young-hering visual system. Ciba Symp. on Color Vision: Physiology and Experimental Psychology, p. 178. Edited by A.V.S. de Reuck and J. Knight, Churchill, London.Google Scholar
  39. Takeuchi and Takeuchi, N. (1964). The Effect on Crayfish Muscle of Iontophoretically Applied Glutamate. J. Physiol. (London), 170: 296–317.Google Scholar
  40. Voaden, M.J. and Starr, M.S. (1972). The efflux of radioactive GABA from rat retina in vitro. Vision Res.12: 559–566.PubMedCrossRefGoogle Scholar
  41. Werman, R. (1966). Criteria for the identification of a central nervous system transmitter. Comp. Biochem. Physiol.18: 745–766.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Boris D. Drujan
    • 1
  • M. Jodlowsky
    • 1
  1. 1.Laboratory of NeurochemistryI.V.I.C.Caracas 101Venezuela

Personalised recommendations