High Resolution Radioautography of Noradrenergic Axon Terminals in the Neocortex

  • Laurent Descarries
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 1)


The existence of high affinity transport systems in the retina has been described for many substances being considered as neurotransmitters (for discussion, see van Gelder, this volume). These and other studies have demonstrated the usefulness of the “retinal model” for investigating biochemical properties of nervous tissue. They have also prompted several attemps to localise uptake sites by means of light microscope radioautography, in its highly ordered, though relatively simple cytoarchitecture (see Appendix I). However, no comparable investigations have yet been carried out at the electron microscopic level, despite the fact that tritiated dopamine, GABA and glycine, for example, which have been shown to be preferentially accumulated in certain cells of the retina, are also known to be retained in situ by the chemical fixation procedures required for high resolution radioautography. Thus, neither the fine structural features of the transmitter-containing elements, nor the intracellular distribution of the labelled neurotransmitters have been analysed in the retina, as in other parts of the central nervous system. The present report will therefore attempt to illustrate some of the principles and applications of high resolution radioautography in the identification and study of neuronal elements specified by their neurotransmitter content, using rat cerebral cortex as a model for the retina.


Nerve Ending Fine Structural Feature Endogenous Norepinephrine High Affinity Transport System Monoamine Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G.K. and Bloom, F.E. (1967) The formation of synaptic junctions in developing brain: a quantitative electron-microscopic study. Brain Research 6, 716–727.PubMedCrossRefGoogle Scholar
  2. Anden, N.-E., Dahlström, A., Fuxe, K. and Larsson, K. (1965) Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon. Life Sci. 4, 1275–1279.PubMedCrossRefGoogle Scholar
  3. Anden, N.-E., Dahlström, A., Fuxe, K., Larsson, K., Olson, I., and Ungerstedt, U. (1966) Ascending monoamine neurons to the telencephalon and diencephalon. Acta physiol. scand. 67: 313–326.CrossRefGoogle Scholar
  4. Anden, N.-E., Dahlström, A., Fuxe, K., Olson, L. and Ungerstedt, U. (1966) Ascending noradrenaline neurons from the pons and the medulla oblongata. Experientia (Basel) 22: 44–45.CrossRefGoogle Scholar
  5. Anden, N.-E., Fuxe, K. and Larsson, K. (1966) Effect of large mesencephalic-diencephalic lesions on the noradrenaline, dopamine and 5-hydroxytryptamine neurons of the central nervous system. Experientia (Basel) 22: 842–843.CrossRefGoogle Scholar
  6. Anden, N.-E., Fuxe, K. and Ungerstedt, U. (1967) Monoamine pathways to the cerebellum and cerebral cortex. Experientia (Basel) 23: 838–839.CrossRefGoogle Scholar
  7. Blackstad, T.W., Fuxe, K. and Hökfelt, T. (1967) Noradrenaline nerve terminals in the hippocampal region of the rat and the guinea pig. Z. Zellforsh. 78: 463–473.CrossRefGoogle Scholar
  8. Caro, L.G., can Tubergen, R.P. and Kolb, J.A. (1962) High-resolution radioautography. I. Methods. J. Cell. Biol. 15: 173–188.PubMedCrossRefGoogle Scholar
  9. Cragg, B.G. (1967) The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J. Anat. 101: 639–654.PubMedGoogle Scholar
  10. Dahlström, A., Fuxe, K., Olson, L. and Ungerstedt, U. (1964) Ascending systems of catecholamine neurons from the lower brain stem. Acta physiol. scand. 62: 485–486.CrossRefGoogle Scholar
  11. DahlstrBm, A., Häggendal, J. and Hökfelt, T. (1966) The noradrenaline content of the varicosities of sympathetic adrenergic nerve terminals in the rat. Acta physiol. scand. 67: 289–294.CrossRefGoogle Scholar
  12. Descarries, L. and Droz, B. (1970) Intraneuronal distribution of exogenous norepinephrine in the central nervous system of the rat. J. Cell Biol. 49: 385–399.CrossRefGoogle Scholar
  13. Descarries, L. and Saucier, G. (1972) Disappearance of the locus coeruleus in the rat after intraventricular 6-hydroxydopamine. Brain Research 37: 310–316.PubMedCrossRefGoogle Scholar
  14. Descarries, L. and Lapierre, Y. (1973) Noradrenergic axon terminals in the cerebral cortex of rat. I. Radioautographic visualization after topical application of DL-norepinephrine-3H. Brain Research 51: 141–160.PubMedCrossRefGoogle Scholar
  15. Falck, B., Mchedlishvili, G.I. and Owman, C. (1965) Histochemical demonstration of adrenergic nerves in cortex-pia of rabbit. Acta Pharmacol, et Toxicol. 23: 133–142.CrossRefGoogle Scholar
  16. Fuxe, K. (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta physiol. scand. 64, Suppl. 247: 37–85.Google Scholar
  17. Fuxe, K., Hamberger, B. and Hökfelt, T. (1968) Distribution of noradrenaline nerve terminals in cortical areas of the rat. Brain Research 8: 125–131.PubMedCrossRefGoogle Scholar
  18. Hökfelt, T., Fuxe, K., Johansson, O. and Ljungdahl, A. (1974) Pharmaco-histochemical evidence of the existence of dopamine nerve terminals in the limbic cortex. Europ. J. Pharmacol. 25: 108–112.CrossRefGoogle Scholar
  19. Iversen, L.L. and Bloom, F.E. (1972) Studies of the uptake of 3H-GABA and 3H- glycine in slices and homogenates of rat brain and spinal cord by electron microscope radioautography. Brain Research 41: 131–143.PubMedCrossRefGoogle Scholar
  20. Kuhar, M.J. and Aghajanian, G.K. (1973). Selective accumulation of 3H-serotonin by nerve terminals of raphe neurones: an autoradiographic study. Nature New Biol. 241: 187–189.PubMedCrossRefGoogle Scholar
  21. Lapierre, Y., Beaudet, A., Demianczuk, N. and Descarries, L. (1973). Noradrenergic axon terminals in the cerebral cortex of rat. II. Quantitative data revealed by light and electron microscope radioautography of the frontal cortex. Brain Research 63:175–182.PubMedCrossRefGoogle Scholar
  22. Lidbrink, P. and Jonsson, G. (1971) Semiquantitative estimation of formaldehyde-induced fluorescence of noradrenaline in central noradrenaline nerve terminals. J. Histochem. Cytochem. 19: 747–757.PubMedCrossRefGoogle Scholar
  23. NystrBm, B., Olson, L. and Ungerstedt, U. (1972) Noradrenaline nerve terminals in human cerebral cortices: first histochemical evidence. Science 176: 924–926.CrossRefGoogle Scholar
  24. Ungerstedt, U. (1971a) Histochemical studies on the effect of intracerebral and intraventricular injections of 6-hydroxydopamine on monoamine neurons in the rat brain. In 6-Hydroxydopamine and Catecholamine Neurons. Edited by Malmfors, T. and Thoenen, H., North-Holland Publ., Amsterdam, pp. 101–127.Google Scholar
  25. Ungerstedt, U. (1971b). Stereotaxic mapping of the monoamine pathways in the rat brain, Acta physiol. scand. Suppl. 367: 1–48.PubMedGoogle Scholar

References (Appendix I)

  1. 1.
    Bruun, A. and Ehinger, B. (1972). Uptake of the putative neurotransmitter, glycine, into the rabbit retina. Invest. Ophtalmol. 11, 191–198.Google Scholar
  2. 2.
    Ehinger, B. (1970). Autoradioautographic Identification of Rabbit Retinal Neurons that take up GABA. Experientia 26, 1063–1064.PubMedCrossRefGoogle Scholar
  3. 3.
    Ehinger, B. (1972). Cellular location of the uptake of some amino acids into the rabbit retina. Brain Research 46, 297–311.PubMedCrossRefGoogle Scholar
  4. 4.
    Ehinger, B. and Falck, B. (1971). Autoradiography of some suspected neurotransmitter substances: GABA, glycine, glutamic acid, histamine, dopamine, and L-Dopa. Brain Research 33, 157–172.PubMedCrossRefGoogle Scholar
  5. 5.
    Iversen, L.L. and Schon, F.E. (1973). The use of autoradiographic techniques for the identification and mapping of transmitter specific neurons in CNS. In New Concepts in Neurotransmitter Regulation, A.J. Mandell edit., Plenum Press, New York — London, 153–193.CrossRefGoogle Scholar
  6. 6.
    Kramer, S.G., Potts, A.M. and Mangnall, Y. (1971). Dopamine: a retinal neurotransmitter. II. Autoradiographic localization of H3-dopamine in the retina. Invest. Ophtalmol. 10, 617–624.Google Scholar
  7. 7.
    Lam, D.M.K. and Steinman, L. (1971). The Uptake of {γ- 3H} Ami-nobutyric Acid in the Goldfish Retina. Proc. Nat. Acad. Sci. USA 68, 2777–2781.PubMedCrossRefGoogle Scholar
  8. 8.
    Marshall, J. and Voaden M. (1974). An Investigation of the Cells Incorporating {3H} GABA and {3H} Glycine in the Isolated Retina of the Rat. Exp. Eye Res. 18, 367–370.PubMedCrossRefGoogle Scholar
  9. 9.
    Neal, M.J. and Iversen, L.L. (1972). Autoradiographic Localization of % GABA in Rat Retina. Nature (New Biol.) 235, 217–218.CrossRefGoogle Scholar
  10. 10.
    Voaden M.J., Marshall, J. and Murani, N. (1974). The uptake of {3H} y-amino butyric acid and{3H} glycine by the isolated retina of the frog. Brain Research 67, 115–132.PubMedCrossRefGoogle Scholar
  11. Bélanger, L.F. and Leblond, C.P. (1946). A method for locating radioactive elements in tissue by covering histological sections with photographic emulsion. Endocr. 39: 8–13.CrossRefGoogle Scholar
  12. Caro, L.G. and Van Tubergen, R.P. (1962). High resolution radio-autography. I. Methods. J. Cell Biol. 15: 173–188.PubMedCrossRefGoogle Scholar
  13. Granboulan, P. (1965). Comparison of emulsions and techniques in electron microscope radioautography. In: The use of radio-autography in investigating protein synthesis. Leblond, C.P. and Warren, K.B. edits., Academic Press, New York, 43–63.CrossRefGoogle Scholar
  14. Kopriwa, B.M. and Leblond, C.P. (1962). Improvements in the coating technique of radioautography. J. Histochem. Cytochem. 10: 269–284.CrossRefGoogle Scholar
  15. Lacassagne, A., Lattes, J. and Lavedan, J. (1925). Etude expérimentale des effets biologiques du polonium introduit dans l’organisme. J. Radiol. Electrol. 9: 1–14.Google Scholar
  16. Larra, F. and Droz, B. (1970). Techniques radioautographiques et leur application à l’étude du renouvellement des constituants cellulaires. J. Microscopie 9: 845–880.Google Scholar
  17. Salpeter, M.M. and Bachmann, L. (1965). Assessment of technical steps in electron microscope autoradiography. In: The use of radioautography in investigating protein synthesis. Leblond, C.P. and Warren, K.B. edits., Academic Press, New York, 23–39.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Laurent Descarries
    • 1
  1. 1.Centre de recherche en sciences neurologiquesUniversité de MontréalCanada

Personalised recommendations