Advertisement

Photophysical Processes in Visual Pigments

  • Roger M. Leblanc
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 1)

Abstract

The photoreceptor cells use the energy of light quanta as transducers, converting light energy into neural signals. The first process in these cells is absorption which produces an electronically excited state. Their great light sensitivity involves an efficient absorption of visible light.

Keywords

Triplet State Photoreceptor Cell Visual Pigment Excited Singlet State Flash Photolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson, E.W., Adams, R.G. and Wulff, V.J. (1959). Reversible spectral changes in retinene solutions following flash illumination. J. Phys. Chem. 63: 441–443.CrossRefGoogle Scholar
  2. Becker, R.S., Inuzuka, K., King, J. and Balke, D.E. (1971). Comprehensive investigation of the spectroscopy and photochemistry of retinals. II. Theoretical and experimental consideration of emission and photochemistry. J. Am. Chem. Soc. 93: 43–50.PubMedCrossRefGoogle Scholar
  3. Bensasson, R., Land, E.J. and Truscott, T.G. (1973). The triplet state of retinal: is it involved in vision? Photochem. Photobiol. 17: 53–55.CrossRefGoogle Scholar
  4. Birks, J.L. (1970). Photophysics of Aromatic Molecules, Wiley, London.Google Scholar
  5. Boag, J.W. (1968). Technique of flash photolysis. Photochem. Photobiol. 8: 565–577.PubMedCrossRefGoogle Scholar
  6. Bridges, C.D.B. (1972). The rhodopsin — porphyropsin visual system. In: Handbook of Sensory Physiology, Vol. VII/1, chapter 11, edited by H.J.A. Dartnall, Springer-Verlag, New York.Google Scholar
  7. Busch, G.E., Applebury, M.L., Lamola, A.A. and Rentzepis, P.M. (1972). Formation and decay of prelumirhodopsin at room temperatures. Proc. Nat. Acad. Sci. USA 69: 2802–2806.PubMedCrossRefGoogle Scholar
  8. Christensen, R.L. and Kohler, B.E. (1974). Excitation spectroscopy of retinal and related polyenes. Photochem. Photobiol. 19: 401–410.PubMedCrossRefGoogle Scholar
  9. Dartnall, H.J.A. (1968). The photosensitivities of visual pigments in the presence of hydroxylamine. Vision Res. 8: 339–358.PubMedCrossRefGoogle Scholar
  10. Dawson, W.R. and Abrahamson, E.W. (1962). Population and decay of the lowest triplet state of polyenes with conjugated heteroatoms: retinene. J. Phys. Chem. 66: 2542–2547.CrossRefGoogle Scholar
  11. Ebrey, T.G. (1972). The fluorescence from the tryptophans of rhodopsin. Photochem. Photobiol. 15: 585–588.PubMedCrossRefGoogle Scholar
  12. Grellman, K.H., Memming, R. and Livingston, R. (1962). Some flash-photolytic and photochemical studies of retinene and related compounds. J. Am. Chem. Soc. 84: 546–548.CrossRefGoogle Scholar
  13. Guzzo, A.V. and Pool, G.L. (1968). Visual pigment fluorescence. Science 159: 312–314.PubMedCrossRefGoogle Scholar
  14. Guzzo, A.V. and Pool, G.L. (1969). Fluorescence spectra of the intermediates of rhodopsin bleaching. Photochem. Photobiol. 9: 565–570.PubMedCrossRefGoogle Scholar
  15. Guzzo, A.V. and Pool, G.L. (1969). Energy transfer to the triplet level of all-trans retinal. J. Phys. Chem. 73: 2512–2515.PubMedCrossRefGoogle Scholar
  16. Guzzo, A.V. (1973). Light induced changes in the protein fluorescence of rhodopsin. Vision Res. 13: 2581–2586.PubMedCrossRefGoogle Scholar
  17. Hodgkinson, K.A. and Munro, I.H. (1973). Excited singlet and triplet states of aromatic hydrocarbons determined by a laser photolysis technique. J. Mol. Spectrosc. 48: 57–71.CrossRefGoogle Scholar
  18. Kropf, A. (1967). Intramolecular energy transfer in rhodopsin. Vision Res. 7: 811–818.PubMedCrossRefGoogle Scholar
  19. Leblanc, R.M., Galinier, G., Tessier, A. and Lemieux, L. (1974). Laser spectrofluorimetry of chlorophylls. Can. J. Chem. (in press).Google Scholar
  20. Marshall, J. and Mellerio, J. (1970). Laser irradiation of retinal tissue. Br. Med. Bull. 26: 156–160.PubMedGoogle Scholar
  21. Moore, C.B. (1971). Lasers in chemistry. Ann. Rev. Phys. Chem. 22: 387–428.CrossRefGoogle Scholar
  22. Moore, T.A. and Song, P.S. (1973). Molecular interactions in the ground and excited states of retinal. Nature New Biol. 243: 30–32.PubMedCrossRefGoogle Scholar
  23. Porter, G. (1950). Flash photolysis and spectroscopy. A new method for the study of free-radical reactions. Proc. R. Soc. Lond. Ser. A, 200: 284–300.CrossRefGoogle Scholar
  24. Porter, G. and Topp, M.R. (1968). Nanosecond flash photolysis and the absorption spectra of excited singlet states. Nature 220: 1228–1229.CrossRefGoogle Scholar
  25. Raubach, R.A. and Guzzo, A.V. (1971). Singlet-triplet absorption spectrum of all-trans retinal. J. Phys. Chem. 75: 983–984.PubMedCrossRefGoogle Scholar
  26. Raubach, R.A. and Guzzo, A.V. (1973). Photoisomerization pathways in the visually important polyenes. I. The retinals. J. Phys. Chem. 77: 889–892.PubMedCrossRefGoogle Scholar
  27. Rentzepis, P.M. (1968). Lasers in chemistry. Photochem. Photobiol. 8: 579–588.PubMedCrossRefGoogle Scholar
  28. Rosenberg, R. (1966). A physical approach to the visual receptor process. In: Advances in Radiation Biology, edited by L.G. Augenstein, R. Mason and M.R. Zelle, Vol. II, p. 193–241. Academic Press, New York.Google Scholar
  29. Rosenfeld, T., Alchalal, A. and Ottolenghi, M. (1972). Nanosecond laser photolysis of rhodopsin in solution. Nature 240: 482–483.PubMedCrossRefGoogle Scholar
  30. Schaffer, A.M., Waddell, W.H. and Becker, R.S. (1974). Visual pigments. IV. Experimental and theoretical investigations of the absorption spectra of retinal Schiff bases and retinals. J. Am. Chem. Soc. 96: 2063–2068.PubMedCrossRefGoogle Scholar
  31. Sengbusch, G.V. and Stieve, H. (1971 a). Flash photolysis of rhodopsin. I. Measurements on bovine rod outer segments. Z. Naturforsch. 26b: 488–489.Google Scholar
  32. Sengbusch, G.V. and Stieve, H. (1971 b). Flash photolysis of rhodopsin. II. Measurements on rhodopsin digitonin solutions and fragments of rod outer segments. Z. Naturforsch. 26b: 861–862.Google Scholar
  33. Truscott, T.G., Land, E.J. and Sykes, A. (1973). The in vivo photochemistry of biological molecules. III. Absorption spectra, lifetimes and rates of oxygen quenching of the triplet states of β-carotene, retinal and related polyenes. Photochem. Photobiol. 17: 43–51.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Roger M. Leblanc
    • 1
  1. 1.Groupe de Recherche en BiophysiqueUniversité du QuébecTrois-RivièresCanada

Personalised recommendations