Electroretinography as a Tool for Studying Fish Vision

  • M. A. Ali
  • W. R. A. Muntz
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 1)


It has been known since the middle of the 19th century that there is a large and relatively constant potential of several millivolts across the vertebrate eye, with the cornea normally positive with respect to the fundus (Du Bois Raymond, 1849). With the apparatus available at that time it was not possible to determine whether this potential was affected by light, but later Holmgren (1865) detected, in frog eyes, transient changes at both the onset and cessation of light stimuli, showing that this was indeed the case. Since that time a very large number of experiments of increasing accuracy and sophistication have been undertaken by many workers on a wide variety of species, and the details of the response, which has come to be known as the electroretinogram or ERG, are now well known (see for example Granit 1947, Brindley 1970, for reviews). Many of these experiments have been concerned with the physiological mechanisms underlying visual function, and where fishes have been used this has been only incidental and because of their convenience as experimental subjects. Experiments of this type fall outside the scope of this paper, and will therefore not be considered further here.


Spectral Sensitivity Brook Trout Visual Pigment Sensitivity Curve Fusion Frequency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E.D., and Matthews, R. (1927a). The action of light on the eye. I. The discharge of impulses in the optic nerve and its relation to the electric changes in the retina. J. Physiol. 63: 378–414.PubMedGoogle Scholar
  2. Adrian, E.D. and Matthews, R. (1927b). The action of light on the eye. II. The processes involved in retinal excitation. J. Physiol. 64: 279–301.PubMedGoogle Scholar
  3. Adrian, E.D. and Matthews, R. (1928). The action of light on the eye. III. Nervous conduction in retina. J. Physiol. 65: 273–298.PubMedGoogle Scholar
  4. Ali, M.A. and Kobayashi, H. (1967). Temperature: influence on the electroretinogram-flicker fusion frequency of the sunfish (Lepomis gibbosus L.). Rev. Can. Biol., 26: 341–345.PubMedGoogle Scholar
  5. Ali, M.A. and Kobayashi, H. (1968a). Electroretinogram of albino and pigmented trout Salvelinus fontinalis (Mitchill). Rev. Can. Biol., 27: 145–161.PubMedGoogle Scholar
  6. Ali, M.A. and Kobayashi, H. (1968b). Electroretinogram-flicker fusion frequency in albino trout. Experientia 24: 454–455.PubMedCrossRefGoogle Scholar
  7. Barlow, H.B. (1953). Summation and inhibition in the frog’s retina J. Physiol. 119: 69–88.PubMedGoogle Scholar
  8. Brindley, G.S. (1970). Physiology of the retina and visual pathway. Arnold: London.Google Scholar
  9. Burkhard, D.A. (1966). The goldfish electroretinogram: relation between photopic spectral sensitivity functions and cone absorption spectra. Vision Res. 6: 517–532.CrossRefGoogle Scholar
  10. Burkhardt, D.A. (1968). Cone action spectra: Evidence from the goldfish electroretinogram. Vision Res. 8: 839–853.PubMedCrossRefGoogle Scholar
  11. Cronly-Dillon, J.R. and Muntz, W.R.A. (1965). The spectral sensitivity of the goldfish and the clawed toad tadpole under photopic conditions. J. Exp. Bio. 42: 481–493.Google Scholar
  12. Crouzy, R. et Ali, M.A. (1966). Relation entre la sensibilité élec-trorétinographique et le spectre d’absorption du pigment visuel scotopique chez le poisson rouge. Nombre minimum de quanta absorbées. Bull. Mus. Nat. Hist. Nat. Mars., 2e série, 38: 730–743.Google Scholar
  13. Crozier, W.H., Wolf, E. and Zerrahn-Wolf, G. (1936). Temperature and critical illumination for reaction to flickering light. II. Sunfish. J. Gen. Physiol. 20: 411–431.CrossRefGoogle Scholar
  14. Dartnall, H.J.A. The interpretation of spectral sensitivity curves. (1953). Br. Med. Bull. 9: 24–30.PubMedGoogle Scholar
  15. Day, E.C. (1915). Photoelectric currents in the eye of the fish. Am. J. Physiol. 38: 369–398.Google Scholar
  16. Denton, E.J., and Pirenne, M.H. (1954). The visual sensitivity of the toad Xenopus laevis. J. Physiol. 125: 181–207.PubMedGoogle Scholar
  17. Dewar, J. and McKendrick, J.G. (1873). Recent researches on the physiological action of light. Nature 8: 204–205.CrossRefGoogle Scholar
  18. DuBois Reymond, E. (1849). Untersuchungen über thierische Elektri-cität. Vol. II., G. Reimer, Berlin, p. 256–257.Google Scholar
  19. Easter, S.S. and Hamasaki, D.I. (1973). Electroretinographically Determined scotopic spectral sensitivity of some marine fish. Vision Res. 13: 1175–1181.PubMedCrossRefGoogle Scholar
  20. Gramoni, R. and Ali, M.A. (1970). L’électrorétinogramme et sa fréquence de fusion chez Amia caiva (Linné). Rev. Can. Biol. 29: 353–363.Google Scholar
  21. Granit, R. (1947). Sensory mechanisms of the retina. Oxford University Press, London, p. 412.Google Scholar
  22. Hanyu, I., and Ali, M.A. (1963). Flicker fusion frequency electroretinogram in light-adapted goldfish at various temperatures. Science 140: 662–663.CrossRefGoogle Scholar
  23. Hanyu, I. and Ali, M.A. (1964). Electroretinogram and its flicker fusion frequency at different temperatures in light-adapted salmon (Salmo salar). J. Cell. Comp. Physiol. 63: 309–322.Google Scholar
  24. Hartline, H.K. (1938). The response of single optic nerve fibres of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121: 400–415.Google Scholar
  25. Holmgren, F. (1865–1866). Method att objectivera effecten av ljusintryck pa retina. Upsala Läkaref. Förh. 1: 177–191.Google Scholar
  26. Kobayashi, H (1962). A comparative study on electroretinogram in fish, with special reference to ecological aspects. J. Shimonoseki Coll. Fish., 11: 407–538.Google Scholar
  27. Kobayashi, H. and Ali, M.A. (1971). Electroretinographic determination of spectral sensitivity in albino and pigmented brook trout (Salvelinus fontinalis, Mitchill). Can. J. Physiol. Pharmacol. 49: 1030–1037.PubMedCrossRefGoogle Scholar
  28. Marks, W.B. (1965). Visual pigments of single goldfish cones. J. Physiol. (London) 178: 14–32.PubMedGoogle Scholar
  29. Motokawa, K. Oikawa, T., Tasaki, T. and E. Yamashita. (1958).Flicker and fusion of potentials recorded from fish retina with a microelectrode. Tohoku J. Exptl. Med. 68: 249–256.CrossRefGoogle Scholar
  30. Muntz, W.R.A. (1973). Inert absorbing and reflecting pigments (1973). In “Handbook of Sensory Physiology”, Vol. VII/I,. “Photochemistry of Vision”, edited by H.J.A. Dartnall. Springer-Verlag: Heidelberg, New York. p. 529–565.Google Scholar
  31. Muntz, W.R.A., and Northmore, D.P.M., (1973). Scotopic spectral sensitivity in a teleost fish (Seardinius evythrophthalmus) adapted to different daylengths. Vis. Res. 13: 245–251.PubMedCrossRefGoogle Scholar
  32. Northmore, D.P.M. and Muntz, W.R.A. (1970). Electroretinogram determinations of spectral sensitivity in a teleost fish adapted to different daylengths. Vis. Res. 10: 799–816.PubMedCrossRefGoogle Scholar
  33. Northmore, D.P.M. and, Muntz, W.R.A. (1974). Effects of stimulus size on spectral sensitivity in a fish (Saardiniis erythrophthalmus), measured with a classical conditioning paradigm. Vision Res. 14: 503–514.CrossRefGoogle Scholar
  34. Piper, H. (1905). Untersuchungen über das elektromotorische Verhalten der Netzhaut bei Warmblütern. Arch. Anat. Physiol., Leipzig, Suppl. p. 133–192.Google Scholar
  35. Piper, H. (1910). Die Aktionsströme der Vogel- und Säugernetzhaut bei Reizung durch kurzdauernde Belichtung und Verdunkelung. Arch. Anat. Physiol., Leipzig, Suppl. p. 461–466.Google Scholar
  36. Schellart, N.A.M., Spekreijse, and van den Borg, T.J.T.P. (1974).Influence of temperature on retinal ganglion cell response and ERG of goldfish. J. Physiol. 238: 251–267.PubMedGoogle Scholar
  37. Svaetichin, G. (1956). Spectral response curves from single cones. (1956). Acta physiol. scand. 39: Suppl. 134: 17–46.Google Scholar
  38. Tamura, T. and Hanyu, I. (1959). The flicker Electroretinogram of the carp eye. Bull. Jap. Soc. Scient. Fish. 25: 624–631.CrossRefGoogle Scholar
  39. Thorpe, S.A. (1971). Behavioural measures of spectral sensitivity in goldfish at different temperatures. Vision Res. 11: 419–433.PubMedCrossRefGoogle Scholar
  40. Thorpe, S.A. (1973). The effects of temperature on the psychophysical and electroretinographic spectral sensitivity of the chromatically-adapted goldfish. Vision Res. 13: 59–72.PubMedCrossRefGoogle Scholar
  41. Tomita, T. (1963). Electrical activity in the vertebrate retina. J. Opt. Soc. Am. 53: 49–57.PubMedCrossRefGoogle Scholar
  42. Witkovsky, P. (1968). The effect of chromatic adaptation on color sensitivity in the carp electroretinogram. Vision Res. 8: 823–837.PubMedCrossRefGoogle Scholar
  43. Yager, D. (1967). Behavioural measures and theoretical analysis of spectral sensitivity and spectral saturation in the goldfish. Vision Res. 7: 707–727.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • M. A. Ali
    • 1
    • 2
  • W. R. A. Muntz
    • 1
    • 2
  1. 1.Université de MontréalCanada
  2. 2.University of SussexBrightonUK

Personalised recommendations