Photochemical Efficiency of Chromoproteins. Role of the Molecular Environment

  • Jacques Aghion
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 1)


The biological role of light can be that of a trigger for enzymatic mechanisms deriving their energy from, say, respiratory ATP, as in vision, phototaxis, biological rhythms: it is not conceivable that visible light gives unicellular algae all the energy they need to rush towards it or away from it. On the other hand, in photosynthesis light seems to be an actual source of energy and the phenomena initiated by it are such that they actually promote the synthesis of some ATP.


Acetone Solution Photochemical Efficiency Second Order Reaction Molar Weight Chlorophyll Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson, E.W. and Ostroy, S.E. (1967). The photochemical and macromolecular aspects of vision. Progress in Biophysics and Mole. Biol. 17: 179–215.CrossRefGoogle Scholar
  2. Adamson, A.W. (1967). Physical Chemistry of Surfaces, p. 11. Interscience publishers, New York.Google Scholar
  3. Aghion, J., Broyde, S.B. and Brody, S.S. (1969). Surface reactions of chlorophyll a monolayers at a water-air interface. Biochem. 8: 3120–3126.CrossRefGoogle Scholar
  4. Arden, G.B. (1969). The excitation of photoreceptors. Progress in Biophy. and Mol. Biol. 19: 372–421.Google Scholar
  5. Bannister, T.T. (1963). Les propriétés physiques et photochimiques de la chlorophylle colloidale. Physiol. Vég. 1: 115–127.Google Scholar
  6. Boardman, T.T.. (1970). Physical separation of the photosynthetic photochemical systems. Ann. Rev. Plant Physiol. 21: 115–140.CrossRefGoogle Scholar
  7. Brody, S.S. (1958). New excited state of chlorophyll. Science 128: 838–839.PubMedCrossRefGoogle Scholar
  8. Coumans, M., Strasser, R.J. and Bronchart, R. (1972). Bochum 6th International Congress on Photobiology, abstract 244.Google Scholar
  9. Daemen, F.J.M. (1973). Vertebrate rod outer segment membranes. Biochim. Biophys. Acta 300: 255–288.PubMedCrossRefGoogle Scholar
  10. De Koning, H.W. and Aghion, J. (1967). Etude des complexes de pigments chlorophylliens d’Euglena gracilis au cours de la croissance et à l’état adulte. Plant Cell Physiol. 8: 129–139.Google Scholar
  11. Dijkmans, H. et Aghion, J. (1974). Conditions de formation d’agrégats de chlorophylle a dans des solvants polaires aqueux. Polarité du milieu. Plant Cell Physiol. 15: (in press).Google Scholar
  12. Dinant, M. et Aghion, J. (1973). Agrégation des chlorophylles in vitro. Photodécoloration de la chlorophylle a adsorbée sur des particules de lipoprotéines extraites du lait. Photochem. Photobiol. 17: 25–30.CrossRefGoogle Scholar
  13. Gregory, R.P.F. (1971). Biochemistry of photosynthesis. Wiley Interscience, London.Google Scholar
  14. Gurinovitch, G.P., Sevchenko, A.W. and Solov’ev, K.N. (1968). Spectroscopy of chlorophyll and related compounds, Minsk. English Translation by U.S. Joint Publications Research Service, Washington 1971.Google Scholar
  15. Katz, J.J. (1973). Chlorophyll. In: Inorganic Biochemistry, vol. 2, p. 1022–1066. Elsevier, New York.Google Scholar
  16. Kitajima, M., Ogawa, T., Inoue, Y. and Shibata, K. (1973). Sites of electron donation by alkyl-hydroquinones in the electron transport chain of spinach chloroplasts. Plant Cell Physiol. 14: 787–790.Google Scholar
  17. Rabinowitch, E.I. (1956). Photosynthesis and Related Processes, II. Interscience, New York.Google Scholar
  18. Rorive, B. et Aghion, J. (1972). Variation de quelques propriétiés des chlorophylles de Marchantia polymorpha L. au cours du passage d’un stade jeune à l’état adulte. Physiol. Vég., 10: 665–670.Google Scholar
  19. Smyth, C.P. (1955). Dielectric Behavior and Structure. McGraw Hill, New York.Google Scholar
  20. Strain, H.H. and Svec, W.A. (1966). Extraction, Separation, Estimation and Isolation of the Chlorophylls. In: The Chlorophylls, edited by L.P. Vernon and G.R. Seely, Academic Press, New York, p. 21–66.Google Scholar
  21. Strasser, R.J. (1973). Induction phenomena in green plants when the photosynthetic apparatus starts to work. Arch. Intern. Physiol. Biochim. 81: 935–955.CrossRefGoogle Scholar
  22. Weier, T.E., Stocking, C.R. and Shumway, L.K. (1967). The photo-synthetic apparatus in chloroplasts of higher plants. In: Energy Conversion by the photosynthetic apparatus, Brookhaven National Laboratories, Upton, New York, p. 353–373.Google Scholar
  23. Witt, H.T. (1971). Coupling of quanta, electrons, fields, ions and phosphorylation in the functional membrane of photosynthesis. Quart. Rev. Biophysics 4: 365–477.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Jacques Aghion
    • 1
  1. 1.Département de BotaniqueUniversité de LiègeSart Tilman, LiègeBelgium

Personalised recommendations