In Vitro Pollen Cultures: Progress and Perspectives

  • Erwin Heberle-Bors
  • Eva Stöger
  • Alisher Touraev
  • Viktor Zarsky
  • Oscar Vicente


Today a number of cell culture and molecular techniques are used or are under development to manipulate sexual reproduction. Protoplast fusion is used not only to create somatic hybrids but also to produce cybrids that regenerate into cytoplasmic male sterile plants. Unreduced gametophytes are selected for polyploidization or distant hybridization. In vitro pollination and in vitro fertilization after isolation of egg and sperm cells are used to overcome pre- and postfertilization crossing barriers (Shivanna and Johri, 1985).


Male Sterility Sperm Cell Anther Culture Pollen Development Mature Pollen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abele, J. C., L. W. Kannenberg, R. Keats, G. Sohota, and E. B. Swanson. 1992. Increased induction of microspore embryos following manipulation of donor plant environment and culture temperature in corn (Zea mays L.). Plant Cell Tiss. Org. Cult. 28:87–90.Google Scholar
  2. Alwen, A., N. Eller, M. Kastler, R. M. Benito Moreno, and E. Heberle-Bors. 1990. Potential of in vitro pollen maturation for gene transfer. Physiol. Plant 79:194–196.Google Scholar
  3. Alwen, A., R. M. Benito Moreno, O. Vicente, and E. Heberle-Bors. 1992. Plant endogenous β-glucuronidase activity: how to avoid interference with the use of the E. coli β-glucuronidase as a reporter gene in transgenic plants. Transgenic Res. 1:63–70.PubMedGoogle Scholar
  4. Baskin, T. I., and W. Z. Cande. 1990. The structure and function of the mitotic spindle in flowering plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41:277–315.Google Scholar
  5. Benito Morreno, R. M., A. Alwen, M.-T. Hauser, and E. Heberle-Bors. 1988a. Sporo-phytes and male gametophytes from in vitro cultured tobacco pollen. In Sexual Reproduction in Higher Plants, eds. M. Cresti, P. Gori, and E. Pacini, pp. 137–142. Springer-Verlag, New York.Google Scholar
  6. Benito Moreno, R. M., F. Macke, A. Alwen, and E. Heberle-Bors. 1988b. In situ seed production after pollination with in vitro matured, isolated pollen. Planta 176:145–148.Google Scholar
  7. Bolik, M. and H. U. Koop. 1991. Identification of embryogenic microspores of barley (Hordeum vulgare L.) by individual selection and culture and their potential for transformation by microinjection. Protoplasma 162:61–68.Google Scholar
  8. Booy, G., F. A. Krens, and H. J. Huizing. 1989. Attempted pollen-mediated transformation of maize. J. Plant Physiol. 135:319–324.Google Scholar
  9. Brinster, R. L., E. P. Sandgren, R. R. Behringer, and R. D. Palmiter. 1989. No simple solution for making transgenic mice. Cell 59:239–241.PubMedGoogle Scholar
  10. Capkova, V., E. Hrabetova, and J. Tupy. 1988. Protein synthesis in pollen tubes: preferential formation of new species independent of transcription. Sex. Plant Reprod. 1:150–155.Google Scholar
  11. Carlson, P. S. 1973. Methionine sulfoxcimine-resistant mutants of tobacco. Science 180:1366–1368.PubMedGoogle Scholar
  12. Datta, S. K., K. Datta, and I. Potrykus. 1990a. Embryogenesis and plant regeneration from microspores of both “Indica” and “Japonica” rice (Oryza sativa). Plant Sci. 67:83–88.Google Scholar
  13. Datta, S. K., A. Peterhans, K. Datta, and I. Potrykus. 1990b. Genetically engineered fertile Indica-rice recovered from protoplasts. Biol. Techn. 8:736–740.Google Scholar
  14. De Wet, J.M.J., R. R. Bergquist, J. R. Harlan, D. E. Brink, C. E. Cohen, C. A. Newell, and A. E. De Wet. 1985. Exogenous gene transfer in maize (Zea mays) using DNA treated pollen. In Experimental Manipulation of Ovule Tissue, eds. G. P. Chapman, S. H. Mantell, and W. Daniels, pp. 197–209. Longman, London.Google Scholar
  15. Duijs, J. G., R. E. Voorrips, and J.B.M. Custer. 1989. Microspore culture in Brassica oleracea vegetables. Acta Bot. Neerl. 38:343–344.Google Scholar
  16. Gaillard, A., P. Vergne, and M. Beckert. 1991. Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep. 10 55–58.Google Scholar
  17. Garrido, D., B. Charvat, R. M. Benito Moreno, A. Alwen, O. Vicente, E. Heberle-Bors. 1991. Pollen culture for haploid plant formation in tobacco. In A Laboratory Guide for Cellular and Molecular Plant Biology, eds. I. Negrutiu and G. Gharti-Chhetri, pp. 59–69. Birkhäuser, Basel.Google Scholar
  18. Garrido, D., N. Eller, E. Heberle-Bors, and O. Vicente. 1992. De novo transcription of specific mRNAs during induction of tobacco pollen embryogenesis. Sex. Plant Reprod. in press.Google Scholar
  19. Gregory, W. C. 1940. Experimental studies on the cultivation of excised anthers in nutrient solution. Am. J. Bot. 27:687–692.Google Scholar
  20. Guha, S. and S. C. Maheshwari. 1964. In vitro production of embryos from anthers of Datura. Nature 204:497.Google Scholar
  21. Guha, S., and S. C. Maheshwari. 1966. Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212:97–98.Google Scholar
  22. Hadwiger, M. A., and E. Heberle-Bors. 1986. Pollen plant production in Triticum turgidum ssp. Durum. Proceedings of International Symposium of Nuclear Techniques and in-vitro Culture for Plant Improvement, pp. 213–220. FAO/IAEA, Vienna.Google Scholar
  23. Hamilton, D. A., M. Roy, J. Rueda, R. K. Sindhu, J. Sanford, J. P. Mascarenhas. 1992. Dissection of a pollen-specific promoter from maize by transient transformation assays. Plant Mol. Biol. 18:211–218.PubMedGoogle Scholar
  24. Heberle-Bors, E. 1985. In vitro haploid formation from pollen: a critical review. Theor. Appl. Genet. 71:361–374.Google Scholar
  25. Heberle-Bors, E. 1989. Isolated pollen cultures in tobacco: plant reproductive development in a nutshell. Sex. Plant Reprod. 2:1–10.Google Scholar
  26. Heberle-Bors, E. 1991. Germ line transformation in higher plants. IAPTC Newsletter 64:2–10.Google Scholar
  27. Heberle-Bors, E., R. M. Benito Moreno, E. Alwen, E. Stöger, and O. Vicente. 1990. Transformation of pollen. In eds. H.J.J. Nijkamp, L.H.W. Van der Plas, J. Van Aartrijk. Progress in Plant Cellular and Molecular Biology, pp. 244–251. Kluwer, Dordrecht Boston London.Google Scholar
  28. Henry, Y., and J. de Buyser. 1990. Wheat anther culture: agronomic performance of doubled haploid lines and the release of a new variety ‘Florin’. In Biotechnology in Agriculture and Forestry, Vol. 13, Wheat. ed. Y.P.S. Bajaj, Springer, Berlin.Google Scholar
  29. Heslop-Harrison, J., Y. Heslop-Harrison, R. B. Knox, and B. Howlett. 1973. Pollenwall proteins: Gametophytic and sporophytic fractions in the pollen walls of the Malvaceae. Ann. Bot. 37:403–412.Google Scholar
  30. Hess, D. 1969. Versuche zur Transformation an höheren Pflanzen: Induktion und konstante Weitergabe der Anthocyansynthese bei Petunia hybrida. Z. Pflanzenphysiol. 60:348–358.Google Scholar
  31. Hess, D. 1987. Pollen based techniques in genetic manipulation. Int. Rev. Cytol. 107:169–190.Google Scholar
  32. Hess, D., K. Dressler, R. Nimmrichter. 1991. Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci. 72:233–244.Google Scholar
  33. Hoekstra, F. A., T. Van Roekel, and N. Ten Pas. 1988. Pollen maturation and desiccation tolerance. In Sexual Reproduction in Higher Plants, pp. 291–296. eds. M. Cresti, P. Gori, and E. Pacini. Springer-Verlag, Berlin.Google Scholar
  34. Hu, C., P. Chee, R. Chesney, J. Zhou, and P. Miller. 1990. Intrinsic GUS-like activities in seed plants. Plant Cell Rep. 9:1–5.Google Scholar
  35. Ito, M., and H. Stern. 1967. Studies of meiosis in vitro. I. In vitro culture of meiotic cells. Dev. Biol. 16:36–53.PubMedGoogle Scholar
  36. Kastler, M. 1990. Ultrastrukturelle Unterschiede zwischen in-vivo und in-vitro gereiften Tabakpollen. Diploma Thesis, University of Vienna.Google Scholar
  37. Kirby, E. G., and I. K. Vasil. 1979. Effect of pollen-protein diffusates on germination of eluted pollen samples of Petunia hybrida in vitro. Ann. Bot. 44:361–367.Google Scholar
  38. Kyo, M., and H. Harada. 1986. Control of the developmental pathway of tobacco pollen in vitro. Planta 168:427–432.Google Scholar
  39. Kyo, M., and H. Harada. 1990a. Specific phosphoproteins in the initial period of tobacco pollen embryogenesis. Planta 182:58–63.Google Scholar
  40. Kyo, M., and H. Harada. 1990b. Phosphorylation of proteins associated with embryogenic dedifferentiation of immature pollen grains of Nicotiana rustica. J. Plant Physiol. 136:716–722.Google Scholar
  41. Kyo, M., and T. Ohkawa. 1991. Investigation of subcellular localization of several phosphoproteins in embryogenic pollen grains of tobacco. J. Plant. Physiol. 137:525–529.Google Scholar
  42. Langndge, P., R. Brettschneider, P. Lazzeri, and H. Lorz. 1992. Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J. 2:631–638.Google Scholar
  43. Lavitrano, M., A. Camaioni, V. M. Fazi, S. Dolci, M. G. Farace, and A. C. Spadafora. 1989. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57:717–723.PubMedGoogle Scholar
  44. Liang, G. H., A. Xu, and H. Tang. 1987. Direct generation of wheat haploids via anther culture. Crop Sci. 27:336–339.Google Scholar
  45. Lichter, R. 1985. From microspores to rape plants: a tentative way to low glucosinolate strains. In Cruciferous Crops: Production, Utlization, Description. Vol. 2, pp. 268–277. ed. H. Sorensen, Nijhoff/Junk, Dordrecht.Google Scholar
  46. Löschenberger, F. and E. Heberle-Bors. 1992. Anther culture responsiveness of austrian winter wheat. (Triticum aestivum L.) cultivars. Die Bodenkultur 43:115–122.Google Scholar
  47. Luo, Z. X., and R. Wu. 1989. A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol. Biol. Rep. 7:69–77.Google Scholar
  48. Mariani, C., M. De Beuckeleer, J. Truettner, J. Leemans, and R. G. Goldberg. 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741.Google Scholar
  49. Mariani, C., V. Gossele, M. De Beudkeleer, M. De Block, R. B. Goldberg, W. De Greef, and J. Leemans. 1992. A chimaeric ribonuclease-inhibitor gene restores fertlity to male sterile plants. Nature 357:384–397.Google Scholar
  50. Mascarenhas, J. P. 1988. Anther- and pollen-expressed genes. In Temporal and Spatial Regulation of Plant Genes, eds. D.P.S. Verma, and R. B. Goldberg, pp. 97–115. Springer-Verlag, New York.Google Scholar
  51. Mascarenhas, J. P. 1989. The male gametophyte of flowering plants. Plant Cell 1:657–664.PubMedGoogle Scholar
  52. Mascarenhas, J. P. 1990. Gene activity during pollen development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41:317–338.Google Scholar
  53. Matousek, J. and J. Tupy. 1983. The release of nucleases from tobacco pollen. Plant Sci. Lett. 30:83–89.Google Scholar
  54. Matousek, J. and J. Tupy. 1984. Purification and properties of extracellular nuclease from tobacco pollen. Biol. Plant (Praha) 26:62–73.Google Scholar
  55. Mitchell, J. C. and J. F. Petolino. 1991. Plant regeneration from haploid suspension and protoplast cultures from isolated microspores of maize. J. Plant Physiol. 137:530–536.Google Scholar
  56. Mo, Y., C. Nagel, and J. P. Taylor. 1992. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc. Natl. Acad. Sci. USA 89:7213–7217.PubMedGoogle Scholar
  57. Morrison, R. A., and D. A. Evans. 1988. Haploid plants from tissue culture: new plant varieties in a shortened time. Bio/Technology 6:684–690.Google Scholar
  58. Murray, F. R., G.C.M. Latch, and D. B. Scott. 1992. Surrogate transformation of perennial ryegrass, Lolium perenne, using genetically modified Acremonium endophyte. Mol. Gen. Genet. 233:1–9.PubMedGoogle Scholar
  59. Negrutiu, I., E. Heberle-Bors, and I. Potrykus. 1985. Attempts to transform tobacco pollen by direct gene transfer. In. Biotechnology and Ecology of Pollen, eds. D. L. Mulcahy, Bergamini, G. Mulcahy, and E. Ottaviano, pp. 65–70. Springer-Verlag New York.Google Scholar
  60. Neuhaus, G., G. Spangenberg, O. Mittelsten-Scheid, H. G. Schweiger. 1987. Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor. Appl. Genet. 75:30–36.Google Scholar
  61. Ohta, Y. 1986. High efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. USA 83:715–719.PubMedGoogle Scholar
  62. Ottaviano, E., and D. L. Mulcahy. 1989. Genetics of angiosperm pollen. Adv. Genetics 26:1–64.Google Scholar
  63. Pacini, E. 1990. Tapetum and microspore function. In Microspores. Evolution and Ontogeny, eds. S. Blackmore, and R. B. Knox, pp. 213–237. Academic Press, London.Google Scholar
  64. Pechan, P. M., and W. A. Keller. 1988. Identification of potentially embryogenic microspores in Brassica napus. Physiol. Plant 74:377–384.Google Scholar
  65. Pechan, P. M., D. Bartels, D.C.W. Brown, and J. Schell. 1991. Messenger-RNA and protein changes associated with induction of Brassica microspore embryogenesis. Planta 184:161–165.Google Scholar
  66. Pescitelli, S. M. C. D. Johnson, and J. F. Petolino. 1990. Isolated microspore culture in maize: effects of isolation technique, reduced temperature, and sucrose level. Plant Cell Rep. 8:628–631.Google Scholar
  67. Picard, E., J. M. Jacquemin, F. Granier, M. Bobin, and P. Forgeois. 1988. Genetic transformation of wheat (Triticum aestivum) by plasmid DNA uptake during pollen tube germination. In 7th International Wheat Genetics Symposium, pp. 779–787. Cambridge. Cambridge University Press.Google Scholar
  68. Plegt, L., and R. Bino. 1989. ß-glucuronidase activity during development of the male gametophyte from transgenic and non-transgenic plants. Mol. Gen. Genet. 216:311–327.Google Scholar
  69. Polsoni, L., L. S. Kott, and W. D. Beversdort. 1988. Large scale microspore culture technique for mutation-selection studies in Brassica napus. Can. J. Bot. 66:1681–1685.Google Scholar
  70. Potrykus, I. 1991. Gene transfer to plants: Assessment of published approaches and results. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:205–225.Google Scholar
  71. Reed, S. M., and E. A. Wernsman. 1989. DNA amplification among anther-derived doubled haploid lines of tobacco and its relationship to agronomic performance. Crop Sci. 29:1072–1076.Google Scholar
  72. Sacristan, M. D. 1985. Selection for disease resistance in Brassica cultures. Hereditas Suppl. 3:57–63.Google Scholar
  73. Sanford, J. C., and K. A. Skubik. 1986. Attempted pollen mediated plant transformation using Ti plasmid. In Biotechnology and Ecology of Pollen, eds. D. L. Mulcahy, Mulcahy G. Bergamini, and E. Ottaviano, pp. 71–76. Springer-Verlag, New York.Google Scholar
  74. Sanford, J. C., K. A. Skubik, and B. I. Reisch. 1985. Attempted pollen mediated plant transformation employing genomic donor DNA. Theor. Appl. Genet. 69:571–574.Google Scholar
  75. Saunders, J. A., B. F. Matthews, and S. L. Van Wert. 1991. Pollen electrotransformation for gene transfer in plants. In Guide to Electroporation and Electrofusion eds. D. C. Chang, B. M. Chassy, J. A. Saunders, and A. E. Sower, pp. 227–247. Academic Press.Google Scholar
  76. Shimakura, K. 1934. The capability of continuing divisions of the Tradescantia pollen mother cell in saccharose solution. Cytologia 5:363–373.Google Scholar
  77. Shivanna, K. R. and Johri, B. M. 1985. The angiosperm pollen: structure and function. New Delhi, Wiley Eastern, xv. 374 p.Google Scholar
  78. Stanley, R. G., and H. F. Linskens. 1974. PollenBiology, Biochemistry, Management. Springer-Verlag, Berlin.Google Scholar
  79. Stuaffer, C., R. M. Benito Moreno, and E. Heberle-Bors. 1991. In situ pollination with in vitro matured pollen of Triticum aestivum. Theor. Appl. Genet. 81:576–580.Google Scholar
  80. Stöger, E., R. M. Benito Moreno, B. Ylstra, O. Vicente, E. Heberle-Bors. 1992. Comparison of different techniques for gene transfer into mature and immature tobacco pollen. Trans. Res. 1:71–78.Google Scholar
  81. E. B. Swanson, M. P. Coumans, G. L. Brown, J. D. Patel, W. D. Beversdore. 1988. The characterization of herbicide tolerant plants in Brassica napus L. after in vitro selection of microspores and protoplasts. Plant Cell Rep. 7:83–87.Google Scholar
  82. Takahata, Y., and W. A. Keller. 1991. High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Sci. 74:235–242.Google Scholar
  83. Taylor, L. P., and R. Jorgensen. 1992. Conditional male fertility in chalcone synthase-deficient petunia. J. Hered. 83:11–17.Google Scholar
  84. Telmer, C. A., D. H. Simmonds, and W. Newcomb. 1992. Determination of developmental stage to obtain high frequencies of embryogenie microspores in Brassica napus. Physiol. Plant 84:417–424.Google Scholar
  85. Thompson, R. D., and H. H. Kirch. 1992. The S locus of flowering plants: when self-rejection is self-interest. Trends in Genetics 8:381–387.PubMedGoogle Scholar
  86. Tupy, J., L. Rihova, V. Capcova, and V. Zarsky. 1992. Differentiation and maturation of in situ and in suspension culture. Angiosperm pollen and ovules, E. Ottaviano (eds.), New York: Springer Verlag, p. 309–314.Google Scholar
  87. Twell, D., T. M. Klein, M. E. Fromm, S. McCormick. 1989. Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol. 91:1270–1274.PubMedGoogle Scholar
  88. Van Den Bulk, R. W. 1991. Application of cell and tissue culture and in vitro selection for disease resistance breeding—a review. Euphytica 56:269–285.Google Scholar
  89. Van Der Leede-Plegt, L. M., B.C.E. Van De Ven, R. J. Bino, T.P.M. Van Der Salm, and A.J. Van Tunen. 1992. Introduction and differential use of various promoters in pollen grains of Nicotiana glutinosa and Lilium longiflorum. Plant Cell Rep. 11:20 – 24.Google Scholar
  90. Van Der Meer, I. M., J. E. Stam, A. J. Van Tunen, J.N.M. Mol, and A. R. Stuitje. 1992. Inhibition of flavonoid biosynthesis in petunia anthers by antisense approach results in male sterility. Plant Cell 4:253–262.PubMedGoogle Scholar
  91. Van Herpen, M.M. A., P.F.M. De Groot, J. A.M. Schrauwen, K.J.P.T. Van Den Heuvel, K.A.P. Wetterings, G. J. Wullems, 1992. In-vitro culture of tobacco pollen: gene expression and protein synthesis. Sex Plant Reprod. 5:304–309.Google Scholar
  92. Van Tunen, A. J., and J.M.M. Mol. 1987. A novel purification procedure for chalcone flavanone isomerase from Petunia hybrida and the use of its antibodies to characterize the Po mutation. Arch. Biochem. Biophys. 257:85–91.PubMedGoogle Scholar
  93. Vincente, O., D. Garrido, V. Zarsky, N. Eller, L. Rihova, M. Berenyi, J. Tupy. 1992. Heberle-Bors, E. Induction of embryogenesis in isolated pollen cultures of tobacco. Angiosperm pollen and ovules (E. Ottaviano, et al. eds.) New York, Springer Verlag, p. 279–284.Google Scholar
  94. Waugh, R., and W. Powell. 1992. Using RAPD markers for crop improvement. Trends Biotech 10:186–191.Google Scholar
  95. Wiermann, R., and K. Vieth. 1983. Outer pollen wall, an important accumulation site for flavonoids. Protoplasma 118:230–233.Google Scholar
  96. Willing, R. P., and J. P. Mascarenhas. 1984. Analysis of the complexity and diversity of mRNAs from pollen and shoots of Tradescantia. Plant Physiol. 75:865–868.PubMedGoogle Scholar
  97. Wilson, C., N. Eller, A. Gartner, O. Vincente, E. Heberle-Bors. 1993. Isolation and characterization of a tobacco cDNA clone encoding a putative map kinase. Plant Mol. Biol 23:543–551.PubMedGoogle Scholar
  98. Worrall, D., D. L. Hird, R. Hodge, W. Paul, J. Draper, and R. Scott. 1992. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4:759–771.PubMedGoogle Scholar
  99. Ylstra, B., A. Touraev, R. M. Benito Moreno, E. Stöger, A. J. Van Tunen, O. Vicente, J.N.M. Mol, and E. Heberle-Bors. 1992. Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol. 100:902–907.PubMedGoogle Scholar
  100. Youssef, S. S. R. Morris, P. S. Baenziger, and C. M. Papa. 1989. Cytogenetic studies of progenies from crosses between “Centurk” wheat and its doubled haploids derived from anther culture. Genome 32:622–628.Google Scholar
  101. Zaki, M.A.M., and H. G. Dickinson. 1991. Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sex Plant Reprod. 4:48–55.Google Scholar
  102. Zarsky, V., L. Rihova, and J. Tupy. 1990. Biochemical and cytological changes in young tobacco pollen during in vitro starvation in relation to pollen embryogenesis. In Progress in Plant Cellular and Molecular Biology, eds. H.J.J. Nijkamp, L.H.W. Van der Plas, J. Van Aartrijk, pp. 228–233. Kluwer, Dordrecht.Google Scholar
  103. Zarsky, V., D. Garrido, L. Rihova, J. Tupy, O. Vicente, and E. Heberle-Bors. 1992. Derepression of the cell cycle by starvation is involved in induction of tobacco pollen embryogenesis. Sex. Plant Reprod. 5:189–194.Google Scholar
  104. Zhou, G. Y., J. Weng, Z. Z. Gong, Y. S. Zhen, W. X. Yang, W. F. Shen, Z. F. Wang, Q. Z. Tao, J. G. Huang, S. Y. Qian, G. L. Lin, M. C. Ying, D. Y. Xue, A. H. Hong, Y. J. Xu, S. B. Chen, and X. L. Duan. 1988. A technique for introducing exogenous DNA into plants after self pollination. Scientia Agricultura Sinica 21:1–6.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Erwin Heberle-Bors
  • Eva Stöger
  • Alisher Touraev
  • Viktor Zarsky
  • Oscar Vicente

There are no affiliations available

Personalised recommendations