Advertisement

Gene Expression in Developing Maize Pollen

  • Douglas A. Hamilton

Abstract

A pollen grain represents the male portion of the gametophytic stage in the angiosperm plant life cycle. At its maturity, the pollen grain is only three celled and is certainly a very reduced system in a morphological sense. Yet pollen clearly contains all the genetic information necessary for the formation of a complete plant as is shown by the fact that morphologically normal haploid plants can be generated by changing the normal pathway of development of immature pollen (Raghavan, 1976). The normal pathway of development in pollen is obviously a result of gametophytic, and not sporophytic, gene expression, but little is known about the differences between the two. Are they fundamentally the same, or different? Much work has been presented regarding gene expression in sporophytic tissues, but what is known about gene expression in pollen? Work from a number of labs is beginning to provide information regarding the genetic program in the pollen of several species. This chapter attempts to summarize what has been ascertained concerning gene expression during gametophytic development as exemplified in maize pollen.

Keywords

Pollen Tube Cytoplasmic Male Sterility Pollen Tube Growth Pollen Development Pollen Germination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acevedo, A. and J. G. Scandalios. 1990. Expression of the catalase and superoxide dismutase genes in mature pollen in maize. Theor. Appl. Genet. 80:705–711.CrossRefGoogle Scholar
  2. Albani, D., L. S. Robert, P. A. Donaldson, I. Altosaar, P. G. Arnison, andS. F. Fabijanski. 1990. Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development. Plant Mol. Biol. 15:605–622.PubMedCrossRefGoogle Scholar
  3. Albani, D., I. Altosaar, P. G. Arnison, and S. F. Fabijanski. 1991. A gene showing sequence similarity to pectin esterase is specifically expressed in developing pollen of Brassica napus. Sequences in its 5′ flanking region are conserved in other pollen-specific promoters. Plant Mol. Biol. 16:501–513.PubMedCrossRefGoogle Scholar
  4. Albani, D., R. Sardana, L. S. Robert, I. Altosaar, P. G. Arnison, and S. F. Fabijanski. 1992. A Brassica napus gene family which shows sequence similarity to ascorbate oxidase is expressed in developing pollen. Molecular characterization and analysis of promoter activity in transgenic tobacco plants. Plant J. 2:331–342.PubMedGoogle Scholar
  5. Altschuler, M. and J. P. Mascarenhas. 1982. The synthesis of heat shock and normal proteins at high temperatures and their possible roles in survival under heat stress. In Heat Shock: From Bacteria to Man, eds. M. J. Schlessinger, M. Ashburner, and M. A. Tissieres, pp. 291–297. Cold Spring Harbor Lab, Cold Spring Harbor, New York.Google Scholar
  6. Barnabas, B. and G. Kovacs. 1988. Perspectives of pollen and male gamete selection in cereals. In Fertilization and Embryogenesis in Ovulated Plants, ed. O. Erdelska), pp. 137–147. VEDA, Bratislava.Google Scholar
  7. Bedinger, P. A. and M. D. Edgerton. 1990. Developmental staging of maize microspores reveals a transition in developing microspore proteins. Plant Physiol. 92:474–479.PubMedCrossRefGoogle Scholar
  8. Bienz, M. 1984. Developmental control of the heat shock response in Xenopus. Proc. Natl. Acad. Sci. USA 81:3138–3142.PubMedCrossRefGoogle Scholar
  9. Brown, S. M. and M. L. Crouch. 1990. Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase. Plant Cell 2:263–274.PubMedCrossRefGoogle Scholar
  10. Bryce, W. H. and O. E. Nelson. 1979. Starch synthesizing enzymes in the endosperm and pollen of Zea mays. Plant Physiol. 63:312–317.CrossRefGoogle Scholar
  11. Carpenter, J. L., S. E. Ploense, D. P. Snustad, and C. Silflow. 1992. Preferential expression of an α-tubulin gene of Arabidopsis in pollen. Plant Cell 4:557–571.PubMedCrossRefGoogle Scholar
  12. Clarke, A. E. and P. A. Gleeson. 1981. Molecular aspects of recognition and response in the pollen-stigma interaction. Rec. Adv. Phytochem. 15:161–211.Google Scholar
  13. Cooper, P., T.-H. D. Ho, and R. M. Hauptmann. 1984. Tissue specificity of the heat-shock response in maize. Plant Physiol. 75:431–441.PubMedCrossRefGoogle Scholar
  14. Dupuis, I. and C. Dumas. 1990. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize. (Zea mays L.) reproductive tissues. Plant Physiol. 94:665–670.PubMedCrossRefGoogle Scholar
  15. Evola, S. V., F. A. Burr, and B. Burr. 1986. Evidence for the inclusion of controlling elements within the structural gene at the waxy locus in maize. Genetics 99:275–284.Google Scholar
  16. Felder, M. R., J. G. Scandalios, E. H. Liu (1973) Purification and partial characterization of two genetically defined alcohol dehydrogenase isoenzymes in maize. Biochem Biophys Acta 317:149–159.PubMedGoogle Scholar
  17. Ferl, R. J. and H. S. Nick. 1986. In vivo detection of regulatory factor binding sites in the 5′ flanking region of maize Adhl. J Biol. Chem. 262:7947–1950.Google Scholar
  18. Frankis, R. C. and J. P. Mascarenhas. 1980. Messenger RNA in the ungerminated pollen grain: a direct demonstration of its presence. Ann. Bot. 45:595–599.Google Scholar
  19. Freeling, M. and D. Schwartz. 1973. Genetic relationships between the multiple alcohol dehydrogenases of maize. Biochem. Genet. 8:27–36.PubMedCrossRefGoogle Scholar
  20. Frova, C., G. Binelli, and E. Ottaviano. 1987. Isozyme and HSP gene expression during male gametophyte development in maize. In Isozymes: Current Topics in Biological and Medical Research, Vol. 15, Genetics, Development and Evolution, eds. M. C. Rattazzi and J. G. Scandalios, pp. 97–120. Liss, New York.Google Scholar
  21. Frova, C., G. Taramino, and G. Binelli. 1989. Heat shock proteins during pollen development in maize. Dev. Genet. 10:324–332.CrossRefGoogle Scholar
  22. Gilmartin, P., L. Sarokin, J. Memelink, and N-H. Chua. 1990. Molecular light switches for plant genes. Plant Cell 2:369–378.PubMedCrossRefGoogle Scholar
  23. Goss, J. A. 1968. Development, physiology, and biochemistry of corn and wheat pollen. Bot. Rev. 34:333–358.CrossRefGoogle Scholar
  24. Green, P. J., M-H Yong, M. Cuozzo, Y. Kano-Murakami, P. Silverstein, and N-H. Chua. 1988 Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene. EMBO J. 7:4035–4044.PubMedGoogle Scholar
  25. Guerrero, F. D., L. Crossland, G. S. Smutzer, D. A. Hamilton, and J. P. Mascarenhas. 1990. Promoter sequences from a maize pollen-specific gene direct tissue-specific transcription in tobacco. Mol. Gen. Genet. 224:161–168.PubMedCrossRefGoogle Scholar
  26. Guiltinan, M. J., W. R. Marcotte, and R. S. Quatrano. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250:267–271.PubMedCrossRefGoogle Scholar
  27. Hamilton, D. A., D. M. Bashe, J. R. Stinson, and J. P. Mascarenhas. 1989. Characterization of a pollen-specific genomic clone from maize. Sex. Plant Reprod. 2:208–212.CrossRefGoogle Scholar
  28. Hamilton, D. A., M. Roy, J. Rueda, R. K. Sindu, J. Sanford, and J. P. Mascarenhas. 1992. Dissection of a pollen-specific promoter from maize by transient transformation assays. Plant Mol. Biol. 18:211–218.PubMedCrossRefGoogle Scholar
  29. Hanson, D. D., D. A. Hamilton, J. L. Travis, D. M. Bashe, and J. P. Mascarenhas, 1989. Characterization of a pollen-specific cDNA clone from Zea mays and its expression. Plant Cell 1:173–179.PubMedCrossRefGoogle Scholar
  30. Haskell, D. W. and O. M. Rogers. 1985. RNA synthesis by vegetative and sperm nuclei of trinucleate pollen. Cytologia 50:805–809.CrossRefGoogle Scholar
  31. Hershey, J.W.B. 1991. Translation control in mammalian cells. Ann. Rev. Biochem. 60:717–755.PubMedCrossRefGoogle Scholar
  32. Heslop-Harrison, J. and Y. Heslop-Harrison. 1982. The growth of the grass pollen tube: 1. Characteristics of the polysaccharide particles (“P-particles”) associated with apical growth. Protoplasma 112:71–80.CrossRefGoogle Scholar
  33. Hodge, R., W. Paul, J. Draper, and R. Scott. 1992. Cold-plaque screening: a simple technique for the isolation of low abundance, differentially expressed transcripts from conventional cDNA libraries. Plant J. 2:257–260.CrossRefGoogle Scholar
  34. Hopf, N., N. Plesofsky-Vig, and R. Brambl. 1992. The heat shock response of pollen and other tissues of maize. Plant Mol. Biol. 19:623–630.PubMedCrossRefGoogle Scholar
  35. Jefferson, R. A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405.CrossRefGoogle Scholar
  36. Kamalay, J. C. and R. B. Goldberg. 1980. Regulation of structural gene expression in tobacco. Cell 19:934–946.CrossRefGoogle Scholar
  37. Katagiri, F., E. Lam, and N-H. Chua. 1989. Two tobacco DNA-binding proteins have homology to CREB. Nature 340:727–730.PubMedCrossRefGoogle Scholar
  38. Kiesselbach, T. A. 1949. In The Structure and Reproduction of Corn. pp. 37–50. Univ. of Nebraska Press, Lincoln, NE.Google Scholar
  39. Klosgen, R. B., A. Gierl, Z. Schwartz-Sommer, and H. Saedler. 1986. Molecular analysis of the waxy locus of Zea mays. Mol. Gen. Genet. 203:237–244.CrossRefGoogle Scholar
  40. Kuhlemeier, C., M. Cuozzo, P. J. Green, E. Goyvaerts, K. Ward, and N-H. Chua. 1988. Localization and conditional redundancy of regulatory elements in rbcS-3A, a pea gene encoding the small subunit of ribulose-bisphosphate carboxylase. Proc. Natl. Acad. Sci. USA 85:4662–4666.PubMedCrossRefGoogle Scholar
  41. Laughnan, J. R. and S. Gabay-Laughnan. 1983. Cytoplasmic male sterility in maize. Annu. Rev. Genet. 117:27–48.CrossRefGoogle Scholar
  42. Lindquist, S. and E. A. Craig. 1988. The heat shock proteins. Ann. Rev. Genet. 22:631–677.PubMedCrossRefGoogle Scholar
  43. Lonsdale, D. M. 1987. Cytoplasmic male sterility: a molecular perspective. Plant Physiol. Biochem. 25:265–271.Google Scholar
  44. Mandaron, P., M. F. Niogret, R. Mache, and F. Moneger. 1990. In vitro protein synthesis in isolated microspores of Zea mays at several stages of development. Theor. Appl. Genet. 80:134–138.CrossRefGoogle Scholar
  45. Mariani, C., M. DeBeuckeleer, J. Truettner, J. Leemans, and R. B. Goldberg. 1990. Induction of male sterility in plants by a ribonuclease gene. Nature 347: 737–741.CrossRefGoogle Scholar
  46. Mascarenhas, J. P. 1975. The biochemistry of angiosperm pollen development. Bot. Rev. 41:259–314.CrossRefGoogle Scholar
  47. Mascarenhas, J. P. 1988. Anther- and pollen-expressed genes. In Temporal and Spatial Regulation of Plant Genes, eds. D.P.S. Verma and R. B. Goldberg, pp. 97–115. Springer-Verlag, New York.CrossRefGoogle Scholar
  48. Mascarenhas, J. P. 1989. The male gametophyte of flowering plants. Plant Cell 1:657–664.PubMedCrossRefGoogle Scholar
  49. Mascarenhas, J. P. 1990. Gene activity during pollen development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41:317–338.CrossRefGoogle Scholar
  50. Mascarenhas, J. P. and J. Mermelstein. 1981. Messenger RNAs: their utilization and degradation during pollen germination and tube growth. Acta Soc. Bot. Pol. 50:13–20.Google Scholar
  51. Mascarenhas, N. T., D. Bashe, A. Eisenberg, R. P. Willing, C. M. Xiao, and J. P. Mascarenhas. 1984. Messenger RNAs in corn pollen and protein synthesis during germination and pollen tube growth. Theor. Appl. Genet. 68:323–326.CrossRefGoogle Scholar
  52. McConchie, C. A., T. Hough, and R. B. Knox. Ultrastructural analysis of the mature sperm cells of mature pollen of maize. Zea mays. Protoplasma 139:9–19.Google Scholar
  53. McCormick, S. 1991. Molecular analysis of male gametogenesis in plants. Trends Genet. 6:298–303.Google Scholar
  54. McCormick, S., D. Twell, R. Wing, V. Ursin, J. Yamaguchi, and S. Larabell. 1989. Anther-specific genes: molecular characterization and promoter analysis in transgenic plants. In Plant Reproduction: From Floral Induction to Pollination, eds. E. Lord and G. Bernier, pp. 128–135. American Society of Plant Physiology, Rockville, MD.Google Scholar
  55. McKendree, W. L., A-L. Paul, A. J. DeLisle, and R. J. Ferl. 1990. In vivo and in vitro characterization of protein interactions with the dyad G-box of the Arabidopsis Adh gene. Plant Cell 2:207–214.PubMedCrossRefGoogle Scholar
  56. Mulcahy, D. L. and G. B. Mulcahy. 1987. The effects of pollen competition. Am. Sci. 75:44–50.Google Scholar
  57. Niogret, M-F., M. Dubald, P. Mandaron, and R. Mache. 1991. Characterization of pollen polygalacturonase encoded by several cDNA clones in maize. Plant Mol. Biol. 17:1155–1164.PubMedCrossRefGoogle Scholar
  58. Ottaviano, E., M. Sari-Gorla, and D. L. Mulcahy. 1980. Pollen tube growth rates in Zea mays: implications for genetic improvement of crops. Science 210:437–438.PubMedCrossRefGoogle Scholar
  59. Pressey, R. and B. J. Reger. 1989. Polygalacturonase in pollen from corn and other grasses. Plant Science 59:57–62.CrossRefGoogle Scholar
  60. Raghavan, V. 1976. Experimental Embryogenesis in Vascular Plants. Academic Press, New York.Google Scholar
  61. Reynolds, T. L. and V. Raghavan. 1982. An autoradiographic study of RNA synthesis during maturation and germination of pollen grains of Hyoscyamus niger. Protoplasma 111:177–182.CrossRefGoogle Scholar
  62. Roberts, M. R., F. Robson, G. D. Foster, J. Draper, and R. C. Scott. 1991. A Brassica napus mRNA expressed specifically in developing microspores. Plant Mol. Biol. 17:295–299.PubMedCrossRefGoogle Scholar
  63. Sari-Gorla, M., C. Frova, G. Binelli, and E. Ottaviano. 1986. The extent of gametophytic-sporophytic gene expression in maize. Theor. Appl. Genet. 72:42–47.CrossRefGoogle Scholar
  64. Sari-Gorla, M., E. Ottaviano, E. Frascaroli, and P. Landi. 1989. Herbicide-tolerant corn by pollen selection. Sex. Plant Reprod. 2:65–69.Google Scholar
  65. Schoper, J. B., R. J. Lambert, B. L. Vasilas, and M. E. Westgate. 1987. Plant factors controlling seed set in maize. Plant Physiol. 83:121–125.PubMedCrossRefGoogle Scholar
  66. Schwartz, D. 1971. Genetic control of alcohol dehydrogenase—A competition model for regulation of gene action. Genetics 67:411–25.PubMedGoogle Scholar
  67. Singh, M. B. and Knox, R. B. (1985) Gene controlling beta-galactosidase deficiency in pollen of oilseed rape. J. Hered. 76:199–201.Google Scholar
  68. Smith, A. G., C. G. Gasser, K. A. Budelier, and R. T. Fraley. 1990. Identification and characterization of stamen- and tapetum-specific genes from tomato. Mol. Gen. Genet. 222:9–16.PubMedGoogle Scholar
  69. Stinson, J. R. and J. P. Mascarenhas. 1985. Onset of alcohol dehydrogenase synthesis during microsporogenesis in maize. Plant Physiol. 77:222–224.PubMedCrossRefGoogle Scholar
  70. Stinson, J. R., A. J. Eisenberg, R. P. Willing, M. E. Pe, D. D. Hanson, and J. P. Mascarenhas. 1987. Genes expressed in the male gametophyte of flowering plants and their isolation. Plant Physiol. 83:442–447.PubMedCrossRefGoogle Scholar
  71. Tupy, J. 1982. Alterations in polyadenylated RNA during pollen maturation and germination. Biol. Plant. 24:331–340.CrossRefGoogle Scholar
  72. Tupy, J., J. Suss, E. Hrabetova, and L. Rihova. 1983. Developmental changes in gene expression during pollen differentiation and maturation in Nicotiana tabacum L. Biol. Plant 25:231–237.CrossRefGoogle Scholar
  73. Twell, D., R. Wing, J. Yamaguchi, and S. McCormick. 1989a. Isolation and expression of an anther-specific gene from tomato. Mol. Gen. Genet. 247:240–245.CrossRefGoogle Scholar
  74. Twell, D., T. M. Klein, M. E. Fromm, and S. McCormick. 1989b. Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol. 91:1270–1274.PubMedCrossRefGoogle Scholar
  75. Twell, D., J. Yamaguchi, R. A. Wing, J. Ushiba, and S. McCormick. 1991. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Devel. 5:496–507.PubMedCrossRefGoogle Scholar
  76. van der Meer, I. M., M. E. Stam, A. J. van Tunen, J.N.M. Mol, and A. R. Stuitje, 1992. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4,253–62.PubMedCrossRefGoogle Scholar
  77. van Tunen, A. J., L. A. Mur, G. S. Brouns, J-D. Rienstra, R. E. Koes, and J.N.M. Mol. 1990. Pollen- and anther-specific promoters from petunia: Tandem promoter regulation of the chiA gene. Plant Cell 2:393–401.PubMedCrossRefGoogle Scholar
  78. Willing, R. P. and J. P. Mascarenhas. 1984. Analysis of the complexity and diversity of mRNAs from pollen and shoots of Tradescantia. Plant Physiol. 75:865–868.PubMedCrossRefGoogle Scholar
  79. Willing, R. P., D. Bashe, and J. P. Mascarenhas. 1988. An analysis of the quantity and diversity of messenger RNAs from pollen and shoots of Zea mays. Theor. Appl. Genet. 75:751–753.CrossRefGoogle Scholar
  80. Wing, R. A., J. Yamaguchi, S. K. Larabell, V. M. Ursin, and S. McCormick, 1989. Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia. Plant Mol. Biol. 14:17–28.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Douglas A. Hamilton

There are no affiliations available

Personalised recommendations