Advertisement

Anther-Specific Gene Expression in Brassica and Arabidopsis

  • Huiling Xu
  • R. Bruce Knox
  • Mohan B. Singh

Abstract

Pollen, the male gametophyte of flowering plants, plays a vital role in sexual reproduction and hence seed set. Pollen grains are the haploid products of the meiotic divisions of the diploid microsporocytes, which reside in the anther (Fig. 2–1). This developmental process requires an intimate interaction between two generations: the diploid sporophyte including the microsporocytes and anther tissues and the gametophyte (Knox, 1984). More than 26 developmental characters of male reproductive development have now been described, although for only a limited range of taxa (Blackmore et al., 1987). The character states for Brassica campestris pollen development are presented in Figure 2–2, and Table 2–2 which is based on data collected by Knox (1987).

Keywords

Pollen Tube Male Sterility Pollen Development Mature Pollen Male Gametophyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albani, D., L. S. Robert, P. E. Donaldson, I. Altosaar, P. G. Arnison, and S. F. Fabijanski, 1990. Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development. Plant Mol. Biol. 15:605–622.PubMedCrossRefGoogle Scholar
  2. Albani, D., I. Altosaar, P. G. Arnison, and S. F. Fabijanski. 1991. A gene showing sequence similarity to pectin esterase is specifically expressed in developing pollen of Brassica napus. Sequences in its 5′ flanking region are conserved in other pollen-specific promoters. Plant Mol. Biol. 16:501–513.PubMedCrossRefGoogle Scholar
  3. Albani, D., R. Sardana, L. S. Robert, I. Altosaar, P. G. Arnison, and S. F. Fabijanski. 1992. A Brassica napus gene family which shows sequence similarity to ascorbate oxidase is expressed in developing pollen. Molecular characterization and analysis of promoter activity in transgenic tobacco plants. Plant J. 2(3):331–342.PubMedGoogle Scholar
  4. Blackmore, S., C. McConchie, and R. B. Knox. 1987. Phylogenetic analysis of the male ontogenetic program in aquatic and terrestrial monocotyledons. Cladistics 3:333–347.CrossRefGoogle Scholar
  5. Brown, S. M. and Crouch, M. L. 1990. Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase. Plant Cell 2:263–274.PubMedCrossRefGoogle Scholar
  6. Davies, S. P., M. B. Singh, and R. B. Knox. 1992. Identification and in situ localization of pollen-specific genes. Int. Rev. Cytol. 140:19–34.CrossRefGoogle Scholar
  7. Foster, G. D., R. P. Robinson, M. R. Blundell, R. Hodge, J. Draper, and R. J. Scott. 1992. A Brassica napus mRNA encoding a protein homologous to phospholipid transfer proteins is expressed specifically in the tapetum and developing microspores. Plant Sci. 84:187–192.CrossRefGoogle Scholar
  8. Hamilton, D. A., D. M. Bashe, J. R. Stinson, and J. P. Mascarenhas. 1989. Characterization of a pollen-specific genomic clone from maize. Sex Plant Reprod. 2:208–212.CrossRefGoogle Scholar
  9. Hanson, D. D., D. A. Hamilton, J. L. Travis, D. M. Bashe, and J. P. Mascarenhas. 1989. Characterization of a pollen-specific cDNA clone from Zea mays and its expression. Plant Cell 1:173–179.PubMedCrossRefGoogle Scholar
  10. Hodge, R., W. Paul, J. Draper, and R. Scott. 1992. Cold-plaque screening: a simple technique for the isolation of low abundance, differentially expressed transcripts from conventional cDNA libraries. Plant J. 2(2):257–260.CrossRefGoogle Scholar
  11. Jefferson, R. A., S. M. Burgess, and D. Hirsh. 1986. ß-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83:8447–8451.PubMedCrossRefGoogle Scholar
  12. Jefferson, R. A., T. A. Kavanagh, and M. W. Bevan. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907.PubMedGoogle Scholar
  13. Koltunow, A. M., J. Truettner, K. H. Cox, M. Wallroth, and R. B. Goldberg. 1990. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224.PubMedCrossRefGoogle Scholar
  14. Knox, R. B. 1984. The pollen grain. In Embryology of Angiosperms, ed. B. M. Johri, pp. 197–272. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  15. Knox, R. B. 1987. Pollen differentiation patterns and male function. In Differentiation Patterns in Higher Plants, ed. K. M. Urbanska, pp. 33–52, Academic Press, London.Google Scholar
  16. Knox, R. B. and J. Heslop-Harrison. 1969. Cytochemical localization of enzymes in the wall of the pollen grains. Nature 223:92–94.CrossRefGoogle Scholar
  17. Mariani, C., M. De Blockeleer, J. Truettner, J. Leemans, and R. B. Goldberg, 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741.CrossRefGoogle Scholar
  18. Mascarenhas, J. P. 1992. Pollen gene expression: Molecular evidence. Int. Rev. Cytol. 140:3–18.PubMedCrossRefGoogle Scholar
  19. Pacini, E. 1990. Tapetum and microspore function. In Microspores: Evolution and Ontogeny, eds. S. Blackmore and R. B. Knox, pp. 213–237, Academic Press, London.Google Scholar
  20. Paul, W., Hodge, R., Smartt, S., Draper, J. and Scott, R. 1992. The isolation and characterization of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Mol. Biol. 19:611–622.PubMedCrossRefGoogle Scholar
  21. Roberts, M. R., Foster, G. D., Blundell, R. P., Robinson, S. W., Kumar, A., Draper, J. and Scott, R. 1993. Gametophytic and sporophytic expression of an anther specific Arabidopsis thaliana gene. The Plant J. 3:111–120.CrossRefGoogle Scholar
  22. Smith, C.J.S., C. F. Watson, J. Ray, C. R. Bird, and P. C. Morris. 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334:724–726.CrossRefGoogle Scholar
  23. Smith, C.J.S., C. F. Watson, J. Ray, C. R. Bird, and P. C. Morris. 1990. Inheritance and effect on ripening of antisense polygalacturonase gene in transgenic tomatoes. Plant Mol. Biol. 14:369–379.PubMedCrossRefGoogle Scholar
  24. Stieglitz, G. and H. Stern. 1973. Regulation of ß-l,3-glucanase activity of developing anthers of lilium. Develop. Biol. 34:169–173.PubMedCrossRefGoogle Scholar
  25. Stinson, J. R., A. J. Eisenberg, R. F. Willing, P. M. Enrico, D. D. Hanson, and J. P. Mascarenhas. 1987. Genes expressed in the male gametophyte of flowering plants and their isolation. Plant Physiol. 83:442–447.PubMedCrossRefGoogle Scholar
  26. Theerakulpisut, P., H. L. Xu, M. B. Singh, J. M. Pettitt, and R. B. Knox. 1991. Isolation and developmental expression of Bcpl, an anther-speciifc cDNA clone in Brassica campestris. Plant Cell. 3:1073–1084.Google Scholar
  27. Twell, D., R. A. Wing, J. Yamaguchi, and S. McCormick. 1989. Isolation and expression of an anther-specific gene from tomato. Mol. Gen. Genet. 217:240–245.PubMedCrossRefGoogle Scholar
  28. Twell, D., J. Yamaguchi, R. A. Wing, J. Ushiba, and S. McCormick. 1991. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 5:496–507.PubMedCrossRefGoogle Scholar
  29. van der Krol, A. R., P. E. Lenting, J. Veenstra, I. M. van der Meer, R. E. Koes, A.G.M. Gerätes, and A. R. Stuitje. 1988. An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869.CrossRefGoogle Scholar
  30. van der Meer, I. M., M. E. Stam, A. J. van Tunen, J.N.M. Mol, and A. R. Stuitje. 1992. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4:253–262.PubMedCrossRefGoogle Scholar
  31. Visser, R.G.F., I. Somhorst, G. J. Kuipers, N. J. Ruys, W. J. Feenstra, and E. Jacobsen. 1991. Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol. Gen. Genet. 225:289–296.PubMedCrossRefGoogle Scholar
  32. Willing, R. P. and J. P. Mascarenhas. 1984. Analysis of the complexity and diversity of mRNAs from pollen and shoots of Tradescantia. Plant Physiol. 75:865–868.PubMedCrossRefGoogle Scholar
  33. Willing, R. P., D. Bashe, and J. P. Mascarenhas. 1988. An analysis of the quantity and diversity of messenger RNAs from pollen and shoots of Zea mays. Theor. Appl. Genet. 75:751–753.CrossRefGoogle Scholar
  34. Wing, R. A., J. Yamaguchi, S. K. Larabell, V. M. Ursin, and S. McCormick. 1989. Molecular and genetic characterization of two pollen expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia. Plant Mol. Biol. 14:17–28.CrossRefGoogle Scholar
  35. Worrall, D., D. L. Hird, R. Hodge, W. Paul, J. Draper, and R. Scott. 1992. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4:759–771.PubMedCrossRefGoogle Scholar
  36. Xu, H. 1992. Molecular analysis of anther-specific genes from Brassica campestris and Arabidopsis thaliana. Ph.D. Thesis, University of Melbourne.Google Scholar
  37. Xu, H., S. P. Davies, B.Y.H. Kwan, A. P. O’Brien, M. B. Singh, and R. B. Knox. 1993. Haploid and diploid expression of a Brassica campestris anther-specific gene promoter in Arabidopsis and tobacco. Mol. Gen. Genet. 239:58–65.PubMedGoogle Scholar
  38. Xu, H., Knox, R. B., Taylor, P. E. and Singh, M. B. 1995. Bcpl, a gene required for male fertility in Arabidopsis. Proc. Natl. Acad. Sci. USA 92(6):2106–2110.PubMedCrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Huiling Xu
  • R. Bruce Knox
  • Mohan B. Singh

There are no affiliations available

Personalised recommendations