Advertisement

Temporally Patterned Chemical Communication: Is it Feasible?

  • William E. Conner

Abstract

The temporal characteristics of chemical signals are usually ignored in analyses of animal communication. At best the durability of chemical signals is mentioned and emphasized. It is possible that the communicative role of the temporal characteristics of chemical signals has been underestimated. Using examples from pheromonal communication in moths, evidence is presented that (1) some animals produce pulsed chemical signals, (2) the transmitting medium adequately preserves the temporal pattern of these signals over biologically relevant distances, and (3) the sensory receptors of the receiving animals are capable of detecting the temporal characteristics of these signals. These findings indicate that the temporal pattern of chemical signals merits closer scrutiny, and that pulsed chemical communication is feasible.

Keywords

Wind Speed Chemical Signal Male Moth Smoke Plume Pheromone Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, T. C., and Cardé, R. T. (1979a). Courtship behavior of the oriental fruit moth (Gra-pholitha molesta): Experimental analysis and consideration of the role of sexual selection in the evolution of courtship pheromones in Lepidoptera. Ann. Entomol. Soc. Am. 72:173–187.Google Scholar
  2. Baker, T. C., and Cardé, R. T. (1979b). Analysis of pheromone-mediated behaviors in male Grapholitha molesta, the oriental fruit moth (Lepidoptera: Tortricidae). Environ. Entomol 8:956–968.Google Scholar
  3. Birch, M. C. (1974). Aphrodisiac pheromones in insects. In Birch, M. C. (ed.), Pheromones, American Elsevier, New York, pp. 115–134.Google Scholar
  4. Bossert, W. H. (1968). Temporal patterning in olfactory communication. J. Theor. Biol. 18:157–170.PubMedCrossRefGoogle Scholar
  5. Bossert, W. H. and Wilson, E. O. (1963). The analysis of olfactory communication among animals. J. Theor. Biol. 5:443–469.PubMedCrossRefGoogle Scholar
  6. Brown, J. L. (1975). The Evolution of Behavior. Norton, New York.Google Scholar
  7. Cardé, R. T., and Roelofs, W. L. (1973). Temperature modification of male sex pheromone response and factors affecting female calling in Holomelina Immaculata (Lepidoptera: Arctiidae). Can. Entomol. 105:1505–1512.CrossRefGoogle Scholar
  8. Cardé, R. T., and Webster, R. P. (1981). Endogenous and exogenous factors controlling insect sex pheromone production and responsiveness, particularly among the Lepidoptera.In Kloza, M. (ed.), International Conference on Regulation of Insect Development and Behavior. Darpacz, Poland. June 1980, Wroclaw Technical University Press, Wroclaw, Poland.Google Scholar
  9. Conner, W. E., Eisner, T., Vander Meer, R. K., Guerrero, A., Ghiringelli, D., and Meinwald, J. (1980). Sex attractant of an arctiid moth (Utetheisa ornatrix): A pulsed chemical signal. Behav. Ecol. Sociobiol. 7:55–63.CrossRefGoogle Scholar
  10. Conner, W. E., Eisner, T., Vander Meer, R. K., Guerrero, A., and Meinwald, J. (1981). Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): Role of a pheromone derived from dietary alkaloids. Behav. Ecol. Sociobiol. 9:227–235.CrossRefGoogle Scholar
  11. Csanady, G. F. (1973). Turbulent Diffusion in the Environment, Reidel, Boston.CrossRefGoogle Scholar
  12. Fares, Y., Sharpe, P. J. H., and Magnuson, C.E. (1980). Pheromone dispersion in forests. J. Theoret. Biol. 84:335–359.CrossRefGoogle Scholar
  13. Fullard, J. H., Fenton, M. B., Simmons, J. A. (1979). Jamming bat echolocation: The clicks of arctiid moths. Can. J. Zool. 57:647–649.CrossRefGoogle Scholar
  14. Götz, B. (1951). Die Sexualduftstoffen an Lepidopteren. Experientia 7:406–418.PubMedCrossRefGoogle Scholar
  15. Hidaka, T. (1972). Biology of Hyphantria cunea Drury (Lepidoptera: Arctiidae) in Japan. XIV. Mating behavior. Appl. Entomol. Zool. 7:116–132.Google Scholar
  16. Hill, A., and Roelofs, W. L. (1981). Sex pheromone of the saltmarsh caterpillar moth, Estigmene acrea. J. Chem. Ecol. 7:655–668.CrossRefGoogle Scholar
  17. Hopkins, C. D. (1974). Electric communication in fish. Am. Sci. 62:426–437.PubMedGoogle Scholar
  18. Kennedy, J. S. (1983). Zigzagging and casting as a programmed response to wind-borne odour: A review. Physiol. Entomol. 8:109–120.CrossRefGoogle Scholar
  19. Kennedy, J.S., Ludlow, A. R., and Saunders, C. J. 1981. Guidance of flying male moths by wind-borne sex pheromone. Physiol. Entomol. 6:395–412.CrossRefGoogle Scholar
  20. Kettlewell, J. E. (1946). Female assembling scents with reference to an important paper on the subject. Entomologist 79:8–14.Google Scholar
  21. Kuenen, L. P. S., and Baker, T. (1982). The effects of pheromone concentration on the flight behavior of the oriental fruit moth, Grapholitha molesta. Physiol. Entomol. 7:423–434.CrossRefGoogle Scholar
  22. Lloyd, J. E. (1966). Studies on the flash communication system in Photinus fireflies. Misc. Pub. Mus. Zool. Univ. Mich. 130:1–95.Google Scholar
  23. MacFarland, J. H., and Earle, N. W. (1970). Morphology and histology of the female sex pheromone gland of the salt-marsh caterpillar, Estigmene acrea. Ann. Entomol. Soc. Am. 63:1327–1332.Google Scholar
  24. Marsh, D., Kennedy, J. S., and Ludlow, A. R. (1981). Analysis of zigzagging flight in moths: A correction. Physiol. Entomol. 6:225.CrossRefGoogle Scholar
  25. Michelsen, A. (1979). Insect ears as mechanical systems. Am. Sci. 67:696–706.Google Scholar
  26. Murlis, J., and Jones, C. D. (1981). Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6:71–86.CrossRefGoogle Scholar
  27. Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models, Springer, New York.Google Scholar
  28. Pasquill, F. (1974). Atmospheric Diffusion, Wiley, New York.Google Scholar
  29. Roelofs, W. L. (1977). The scope and limitations of the electroantennogram technique in identifying pheromone components. In McFarlane, N. R. (ed.), Crop Protection Agents: Their Biological Evolution, Academic Press, New York, pp. 147–165.Google Scholar
  30. Rumbo, E. R. (1981). Study of single sensillum responses to pheromone in the light-brown apple moth, Epiphyas postvittana, using an averaging technique. Physiol. Entomol. 6:87–98.CrossRefGoogle Scholar
  31. Rutowski, R. L. (1977). The use of visual cues in sexual and species discrimination by males of the small sulphur butterfly Eurema Usa (Lepidoptera, Pieridae). J. Comp. Physiol. 115:61–74.CrossRefGoogle Scholar
  32. Shorey, H. H. (1976). Animal Communication by Pheromones, Academic Press, New York.Google Scholar
  33. Sower, L., Kaae, R. S., and Shorey, H. H. (1973). Sex pheromones of Lepidoptera XLI. Factors limiting potential distance of sex pheromone communication in Trichoplusia ni. Ann. Entomol. Soc. Am. 66:1121–1122.Google Scholar
  34. Sutton, O. G. (1953). Micrometerology, McGraw-Hill, New York.Google Scholar
  35. Walker, T. J., Jr. (1957). Specificity in the response of female tree crickets (Orthoptera, Gryllidae, Oecanthinae) to calling songs of the males. Ann. Entomol. Soc. Am. 50:626–636.Google Scholar
  36. Werner, R. A. (1977). Morphology and histology of the sex pheromone gland of a geometrid, Rheumaptera hastata. Ann. Entomol. Soc. Am. 70:264–266.Google Scholar
  37. Wright, R. H. (1958). The olfactory guidance of flying insects. Can. Entomol. 90:81–89.CrossRefGoogle Scholar
  38. Wright, R. H. (1964). The Science of Smell, Allen and Unwin, London.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • William E. Conner
    • 1
  1. 1.Department of ZoologyDuke UniversityDurhamUSA

Personalised recommendations