Advertisement

The Temporal Structure of Memory Formation

  • R. J. Andrew

Abstract

In both chick and rat, retrieval shifts during memory formation between different phases of memory, of which “short-term,” “intermediate,” and “long-term” memory (STM, ITM, LTM) are the most clearly established. Two types of relationship between phases have been suggested: (1) sequential dependence, where each new phase is formed from the preceding one; (2) parallel routes, where precursors to each phase are set up independently soon after learning, each route being revealed as a phase of memory when retrieval shifts to it. However, a third model of memory formation, parallel routes that interact at certain points of time, may best fit the data.

Keywords

Left Hemisphere Temporal Structure Memory Formation Ethacrynic Acid Retrieval Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allweis, C., Gibbs, M. E., Ng, K. T., and Hodge, R. J., (1984). Effects of hypoxia on memory consolidation: Implications for a multistage model of memory. Behav. Brain Res. 11:117–121.PubMedCrossRefGoogle Scholar
  2. Andrew, R. J. (1980). The functional organization of phases of memory consolidation. Adv. Study Behav. 11:337–367.CrossRefGoogle Scholar
  3. Andrew, R. J. (1983a). Specific short-latency effects of oestradiol and testosterone on dis-tractibility and memory formation in the young domestic chick. In Balthazart, J., Pröve, E., and Gilles, R., (eds.), Hormones and Behavior in Higher Vertebrates, Springer, Heidelberg, pp. 463–473.CrossRefGoogle Scholar
  4. Andrew, R. J. (1983b). Lateralization of emotional and cognitive function in higher vertebrates, with special reference to the domestic chick. In Ewert, J.-P., Capranica, R. R., and Ingle, D. J., (eds.), Advances in Vertebrate Neuroethology, Plenum Press, London, pp. 477–510.Google Scholar
  5. Andrew, R. J., and Brennan, A. (1983). The lateralization of fear behaviour in the male domestic chick: A developmental study. Anim. Behav. 31:1166–1176.CrossRefGoogle Scholar
  6. Andrew, R. J., and Brennan, A. (in press). Sex differences in lateralization in the domestic chick. Neuropsychologia. Google Scholar
  7. Andrew R. J., and Brennan, A. (in press). Sharply timed and lateralized events at the time of establishment of long-term memory. Physiol. Behav. Google Scholar
  8. Andrew, R. J., and Rogers, L. (1972). Testosterone, search behavior and persistence. Nature 237:343–346.PubMedCrossRefGoogle Scholar
  9. Andrew, R. J., Clifton, P. G., and Gibbs, M. E. (1981). Enhancement of effectiveness of learning by testosterone in the domestic chick. J. Comp. Physiol. Psychol. 95:406–417.PubMedCrossRefGoogle Scholar
  10. Andrew, R. J., Mench, J., and Rainey, C. (1982). Right-left asymmetry of response to visual stimuli in the domestic chick. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W. (eds.), Analysis of Visual Behavior, MIT Press, Cambridge, Massachusetts, pp. 197–210.Google Scholar
  11. Andrew, R. J., Jones, R. B., and Clifton, P. G., (in preparation). Contrasting behaviour of cocks and capons in distraction tests.Google Scholar
  12. Archer, J. (1974). The effects of testosterone on the distractibility of chicks by irrelevant and relevant novel stimuli. Anim. Behav. 22:397–404.PubMedCrossRefGoogle Scholar
  13. Asin, K. E. (1980). Lysine vasopressin attenuation of diethyldithiocarbanate-induced amnesia. Pharmacol. Biochem. Behav. 12:343–346.PubMedCrossRefGoogle Scholar
  14. Barondes, S. H., and Cohen, H. D. (1968). Arousal and the conversion of “short-term” to “long-term” memory. Proc. Natl. Acad. Sci. USA 61:923–929.PubMedCrossRefGoogle Scholar
  15. Bell, G. A., and Ehrlich, D. (1979). Engram lateralization in the intact and split-brain chick. Neurosci. Abstr. 5:313.Google Scholar
  16. Bell, G. A., and Gibbs, M. E. (1977). Unilateral storage of monocular engram in day-old chick. Brain Res. 124:263–270.PubMedCrossRefGoogle Scholar
  17. Bell, G. A., and Gibbs, M. E. (1979). Interhemispheric engram transfer in chick. Neurosci. Lett. 13:163–168.PubMedCrossRefGoogle Scholar
  18. Bohus, B., Kóvacs, G. L., and de Wied, D. (1978). Oxytocin, vasopressin and memory: Opposite effects on consolidation and retrieval processes. Brain Res. 157:414–417.PubMedCrossRefGoogle Scholar
  19. Bradley, P., and Horn, G. (1981). Imprinting: A study of cholinergic receptor sites in parts of the chick brain. Exp. Brain Res. 41:121–123.PubMedCrossRefGoogle Scholar
  20. Bradley, P., Horn, G., and Bateson, P. P. G. (1981). Imprinting: An electron microscopic study of chick hyperstriatum ventrale. Exp. Brain Res. 41:115–120.PubMedCrossRefGoogle Scholar
  21. Brush, F. R. (1971). Retention of aversely motivated behavior. In Brush, F. R. (ed.), Aversive Conditioning and Learning, Academic Press, New York, pp. 401–465.Google Scholar
  22. Chambers, K. C. (1982). Failure of ACTH to prolong extinction of a conditioned taste aversion in the absence of the testes. Physiol. Behav. 29:915–919.PubMedCrossRefGoogle Scholar
  23. Chambers, K. C., and Sengstake, C. B. (1979). Temporal aspects of the dependency of a dimorphic rate of extinction on testosterone. Physiol. Behav. 22:53–56.PubMedCrossRefGoogle Scholar
  24. Cherkin, A. (1969). Kinetics of memory consolidation: Role of amnesic treatment parameters. Proc. Natl. Acad. Sci. USA 63:1094–1101.PubMedCrossRefGoogle Scholar
  25. Cherkin, A. (1971). Biphasic time course of performance after one-trial avoidance training in the chick. Comm. Behav. Biol. 5:379–381.Google Scholar
  26. Clifton, P. G., Andrew, R. J., and Gibbs, M. E. (1982). Limited period of action of testosterone on memory formation in the chick. J. Comp. Physiol. Psychol. 96:212–222.PubMedCrossRefGoogle Scholar
  27. Davis, J. L., Pico, R. M., and Cherkin, A. (1982). Arginine vasopressin enhances memory retroactively in chicks. Behav. Neural Biol. 35:242–250.PubMedCrossRefGoogle Scholar
  28. Denton, C. J. (1981). Topography of the hyperstriatal visual projection area in the young domestic chicken. Exp. Neurol. 74:482–498.PubMedCrossRefGoogle Scholar
  29. De Wied, D., Bohus, B., and van Wimersma Greidanus, T. B. (1975). Memory deficit in rats with hereditary diabetes insipidus. Brain Res. 85:152–156.CrossRefGoogle Scholar
  30. Faulborn, K. W., Fenske, M., Pitzel, L., and König, A. (1979). Effects of an intravenous injection of tetracosactid on plasma corticosteroid and testosterone levels in unstressed male rabbits. Acta Endocrinol. 91:511–518.PubMedGoogle Scholar
  31. Flood, J. F., Jarvik, M. E., Bennett, E. L., and Orme, A. E. (1976). Effects of ACTH peptide fragments on memory formation. Pharmacol. Biochem. Behav. 5:(Suppl. 1):41–51.PubMedCrossRefGoogle Scholar
  32. Flood, J. F., Vidal, D., Bennett, E. L., Orme, A. E., Vasquez, S., and Jarvik, M. E. (1978). Memory facilitating and anti-amnesic effects of corticosteroids. Pharmacol. Biochem. Behav. 8:81–87.PubMedCrossRefGoogle Scholar
  33. Frieder, B., and Allweis, C. (1978). Transient hypoxic amnesia: Evidence for a triphasic memory-consolidating mechanism with parallel processing. Behav. Biol. 22:178–189.PubMedCrossRefGoogle Scholar
  34. Frieder, B., and Allweis, C. (1982). Memory consolidation: Further evidence for the four-phase model from the time-courses of diethyldithiocarbamate and ethacrynic acid amnesias. Physiol. Behav. 29:1071–1075.PubMedCrossRefGoogle Scholar
  35. Gaillard, A. W. K. (1981). ACTH analogs and human performance. In Martinex, J. L., Jensen, R. A., Messing, R. B., Rigter, H., and McGaugh, J. L. (eds.), Endogenous Peptides and Learning and Memory Processes, Academic Press, London, pp. 181–196.Google Scholar
  36. Gaillard, A. W. K., and Sanders, A. F. (1975). Some effects of ACTH 4.10 on performance during a continous reaction task. Prog. Brain Res. 42:209–210.PubMedCrossRefGoogle Scholar
  37. Garrud, P., Gray, J. A., Rickwood, L., and Coen, C. (1977). Pituitary-adrenal hormones and effects of partial reinforcement on appetitive behavior in the rat. Physiol. Behav. 18:813–818.PubMedCrossRefGoogle Scholar
  38. Gibbs, M. E. (1976). Modulation of cycloheximide-resistant memory by sympathomimetic agents. Pharmacol. Biochem. Behav. 4:703–707.PubMedCrossRefGoogle Scholar
  39. Gibbs, M. E. (1983). Memory and behaviour: Birds and their memories. Bird Behav. 4:93–107.Google Scholar
  40. Gibbs, M. E., and Ng, K. T. (1977). Psychobiology of memory: Towards a model of memory formation. Biobehav. Rev. 1:113–136.CrossRefGoogle Scholar
  41. Gibbs, M. E., and Ng, K. T. (1978). Memory formation for an appetitive visual discrimination task in young chicks. Pharmacol. Biochem. Behav. 8:271–276.PubMedCrossRefGoogle Scholar
  42. Gibbs, M. E., and Ng, K. T. (1979). Behavioural stages in memory formation. Neurosci. Lett. 13:279–283.PubMedCrossRefGoogle Scholar
  43. Gibbs, M. E., and Ng, K. T. (1984). Hormonal influence on the duration of short term and intermediate stages of memory. Behav. Brain Res. 11:109–116.PubMedCrossRefGoogle Scholar
  44. Gibbs, M. E., Andrew, R. J., and Clifton, P. G. (in preparation). Extension of memory phases by testosterone.Google Scholar
  45. Gold, P. E., and van Buskirk, R. (1976). Effects of post trial hormone injections on memory processes. Horm. Behav. 7:509–517.PubMedCrossRefGoogle Scholar
  46. Goodale, M. A., and Graves, J. A. (1983). Retinal locus as a factor in interocular transfer in the pigeon. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W. (eds.), Analysis of Visual Behavior, MIT Press, Cambridge, Massachusetts, pp. 197–209.Google Scholar
  47. Gordon, W. C., and Spear, N. E. (1973). Effect of reactivation of a prevously acquired memory on the interaction between memories in the rat. J. Exp. Psychol. 99:349–355.PubMedCrossRefGoogle Scholar
  48. Gray, J. A., Rickwood, L., Drewett, R. F., and Dunne, E. (1977). Gonadal hormones and effects of partial reinforcement on appetitive behaviour in the rat. Physiol. Behav. 19:41–45.PubMedCrossRefGoogle Scholar
  49. Gwinup, G. (1965). Test for pituitary function using vasopressin. Lancet 2:572–573.PubMedCrossRefGoogle Scholar
  50. Hahmeier, W., Fenske, M., Pitzel, L., Holtz, W., and Konig, A. (1980). Corticotropin- and lysine-vasopressin induced changes of plasma corticosteroids and testosterone in the adult male pig. Acta Endocrinol. 95:518–522.PubMedGoogle Scholar
  51. Holloway, F. W., and Wansley, R. A. (1973). Multiple retention deficits at periodic intervals after passive avoidance learning. Behav. Biol. 9:1–14.PubMedCrossRefGoogle Scholar
  52. Horn, G. (1981). Neural mechanisms of learning: An analysis of imprinting in the domestic chick. Proc. R. Soc. Lond. B 213:101–137.PubMedCrossRefGoogle Scholar
  53. Hunsicker, J. P., and Mellgren, R. L. (1977). Multiple deficits in the retention of an ap-petitively motivated behavior across a 24 hr period in rats. Anim. Learn. Behav. 5:14–16.CrossRefGoogle Scholar
  54. Irwin, S., Banuazizi, A., Kalsner, S., and Curtis, A. (1968). One trial learning in the mouse: 1. Its characterisation and modification by experimental-seasonal variables. Psychopharmacologia 12:286–302.PubMedCrossRefGoogle Scholar
  55. Karten, J. H., Hodos, W., Nauta, W. J., andRevzin, A. M. (1973). Telencephalic projections of the retino-diencephalic pathway in the pigeon (Columba livia) and the burrowing owl (Speotyto conicularia). J. Comp. Neurol. 150:253–277.PubMedCrossRefGoogle Scholar
  56. Klaiber, E. L., Broverman, D. M., and Kobayashi, Y. (1967). The automatization cognitive style, androgens and monoamine oxidase. Psychopharmacologia 11:320–336.PubMedCrossRefGoogle Scholar
  57. Kobiler, D., and Allweis, C. (1974). The prevention of long-term-memory formation by 2,6 diaminopurine. Pharmacol. Biochem. Behav. 2:9–17.PubMedCrossRefGoogle Scholar
  58. Kobiler, D., and Allweis, C. (1977). Retrograde amnesia production by the intracisternal injection of 20μl of saline in rats. Pharmacol. Biochem. Behav. 6:255–258.PubMedCrossRefGoogle Scholar
  59. Kóvacs, G. L., Buijs, R. M., Bohus, B., and van Wimersma Greidanus, T. B. (1982). Microinjection of arginine 8-vasopressin antiserum into the dorsal hippocampus attenuates passive avoidance behavior in rats. Physiol. Behav. 28:45–48.PubMedCrossRefGoogle Scholar
  60. Legros, J. J., Gilot, P., Seron, X., Ciaessens, J., Adam, A., Moeglen, J. M., Audibert, A., and Berchier, P. (1978). Influence of vasopressin on learning and memory. Lancet l (8054):41–42.CrossRefGoogle Scholar
  61. Lewis, D. J. (1976). A cognitive approach to experimental amnesia. Am. J. Psychol. 89:51–80.PubMedCrossRefGoogle Scholar
  62. Lewis, D. J. (1979). Psychobiology of active and inactive memory. Psychol. Bull. 86:1054–1083.PubMedCrossRefGoogle Scholar
  63. Ludvigson, H. W., McCleary, P. G., and Boedeker, C. L. (1980). Retention of a running response following appetitive acquisition, extinction and discrimination. Anim. Learn. Behav. 8:135–142.CrossRefGoogle Scholar
  64. McGaugh, J. L., Gold, P. E., van Buskirk, R., and Haycock, J. (1975). Modulating influences of hormones and catecholamines on memory storage processes. Prog. Brain Res. 42:151–162.PubMedCrossRefGoogle Scholar
  65. Menzel, R. (1979). Behavioural access to short-term memory in bees. Nature 281:368–369.PubMedCrossRefGoogle Scholar
  66. Nakajima, S. (1978). Attenuation of amnesia by hydrocortisone in the mouse. Physiol. Behav. 20:607–611.PubMedCrossRefGoogle Scholar
  67. Rigter, H. (1982). Vasopressin and memory: The influence of prior experience with the training situation. Behav. Neural Biol. 34:337–351.PubMedCrossRefGoogle Scholar
  68. Rigter, H., van Riezen, H., and de Wied, D. (1974). The effects of ACTH- and vasopressin-analogues on CO2-induced retrograde amnesia in rats. Physiol. Behav. 13:381–388.PubMedCrossRefGoogle Scholar
  69. Rogers, L. (1974). Persistence and search influenced by natural levels of androgens in young and adult chickens. Physiol. Behav. 12:197–204.PubMedCrossRefGoogle Scholar
  70. Rogers, L. J., Oettinger, R., Szer, J., and Mark, R. F. (1977). Separate chemical inhibitors of long-term and short-term memory: Contrasting effects of cycloheximide, ouabain and ethacrynic acid on various learning tasks in chickens. Proc. R. Soc. Lond. 196:171–195.PubMedCrossRefGoogle Scholar
  71. Sandman, C.A., and Kastin, A. J. (1977). Pituitary peptide influences on attention and memory. In Drucker-Colin, R. R., and McGaugh, J. L. (eds.), Neurobiology of Sleep and Memory, Academic Press, New York, pp. 347–360.Google Scholar
  72. Sandman, C. A., Kastin, A. J., and Schally, A. V. (1981). Neuropeptide influences on central nervous sytem. In Hrdina, P. D., and Singhal, R. L. (eds.), Neuroendocrine Regulation and Altered Behaviour, Croom Helm, London, pp. 5–27.Google Scholar
  73. Sara, S. J. (1974). Delayed development of amnestic behavior after hypoxia. Physiol. Behav. 13:693–696.PubMedCrossRefGoogle Scholar
  74. Stephenson, R. M. (1981). Memory Processing in the Domestic Chick (Gallus gallus): A Psychopharmacological Investigation. D. Phil. Thesis, University of Sussex, Brighton, England.Google Scholar
  75. Stephenson, R. M., and Andrew, R J. (1981). Amnesia due to ß-antagonists in a passive avoidance task in the chick. Pharmacol. Biochem. Behav. 15:597–604.PubMedCrossRefGoogle Scholar
  76. Sutherland, N. S. (1964). The learning of discriminations of animals. Endeavour 23:148–152.PubMedCrossRefGoogle Scholar
  77. Van Praag, J. M., and Verhoeven, W. M. A. (1980). Neuropeptides. A new dimension in biological psychiatry. Prog. Brain Res. 53:123–140.CrossRefGoogle Scholar
  78. Van Wimersma Greidanus, T. B., and de Wied, D. (1976). Modulation of passive-avoidance behavior in rats by intracerebroventricular administration of antivasopressin serum. Behav. Biol. 18:325–333.PubMedCrossRefGoogle Scholar
  79. Van Wimersma Greidanus, T. B., van Dijk, A. M. A., De Rotte, A. A., Goedemans, J. H. J., Croiset, G., and Thody, A. J. (1978). Involvment of ACTH and MSH in active and passive avoidance behavior. Brain Res. Bull. 3:227–230.PubMedCrossRefGoogle Scholar
  80. Wansley, R. A., and Holloway, F. A. (1975). Multiple retention deficits following one-trial appetitive training. Behav. Biol. 14:135–149.PubMedCrossRefGoogle Scholar
  81. Warrington, E. K. (1982). Neuropsychological studies of object recognition. Phil. Trans. R. Soc.Lond.B. 298:15–53.CrossRefGoogle Scholar
  82. Weiskrantz, L. (1982). Comparative aspects of studies of amnesia. Phil. Trans. R. Soc. Lond. B 298:97–109.CrossRefGoogle Scholar
  83. Zammit-Montebello, A., Black, M., Marquis, H. A., and Suboski, M. D. (1969). Incubation of passive avoidance in rats: Shock intensity and pretraining. J. Comp. Physiol. Psychol. 69:579–582.CrossRefGoogle Scholar
  84. Zerbolio, D. J. (1969). Memory storage: The first post-trial hour. Psychon. Sci. 15:57–58.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. J. Andrew
    • 1
  1. 1.School of Biological SciencesUniversity of SussexBrightonEngland

Personalised recommendations