Environmental Influences on Early Development: A Comparison of Imprinting and Cortical Plasticity

  • Hans-Joachim Bischof


A comparison of results in imprinting research and studies of the developmental neurobiology of the visual cortex reveals striking similarities. In both areas information from the environment can only be stored during a sensitive period. The position of this sensitive period seems to be dependent to a certain degree on the developmental stage of the animal. The shape of the sensitivity curve is similar in all cases. Beyond the end of the sensitive period, new information can be superimposed on but cannot alter information acquired in early development. Storage of “normal” stimuli is facilitated by a certain preorganization of the receiving brain areas.


Visual Cortex Zebra Finch Sensitive Period External Stimulation Sensitivity Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agren, G., and Meyerson, B.J. (1979). Long term effects of social deprivation during early adulthood in the Mongolian gerbil (Meriones unguiculatus). Z. Tierpsychol. 47:422–431.Google Scholar
  2. Apfelbach, R., and Rehn, B. (1983). Nahrungsprägung und Entwicklung des Riechsystems beim Frettchen. Verh. Dtsch. Zool. Ges. 1983:263.Google Scholar
  3. Banks, M. S., Aslin, R. N., and Letson, R. D. (1975). Sensitive period for the development of human binocular vision. Science 190:675–677.PubMedGoogle Scholar
  4. Barlow, H. B. (1975). Visual experience and cortical development. Nature 258:199–204.PubMedGoogle Scholar
  5. Bateson, P. P. G. (1966). The characteristics and context of imprinting. Biol. Rev. 41:177–220.PubMedGoogle Scholar
  6. Bateson, P. P. G. (1978). Early experience and sexual preference. In Hutchinson, J. B. (ed.), Biological Determinants of Sexual Behaviour, Wiley, London, pp. 29–53Google Scholar
  7. Bateson, P. P. G. (1979a). Sexual imprinting and optimal outbreeding. Nature 273:659–660.Google Scholar
  8. Bateson, P. P. G. (1979b). How do sensitive periods arise and what are they for? Anim. Behav. 27:470–486.Google Scholar
  9. Bateson, P. P. G. (1980). Rules and reciprocity in behavioural development. In Bateson, P. P. G., and Hinde, R. A (eds.), Growing Points in Ethology, Cambridge University Press, Cambridge, pp. 401–421.Google Scholar
  10. Bateson, P. P. G. (1981). The control of sensitivity to the environment during development. In Immelmann, K., Barlow, G. W., Petrinovich, L., and Main, M. (eds.), Behavioural Development: The Bielefeld Interdisciplinary Project, Cambridge University Press, Cambridge, pp. 432–452.Google Scholar
  11. Bateson, P. P. G. (1983a). The interpretation of sensitive periods. In Oliverio, A., and Zapella, M. (eds.), The Behavior of Human Infants, Plenum Press, New York, pp. 57 – 70.Google Scholar
  12. Bateson, P. P. G. (1982b). Preferences for cousins in Japanese quail. Nature 295:236–237.Google Scholar
  13. Bateson, P. P. G., and Reese, F. D. (1969). The reinforcing properties of conspicious stimuli in the imprinting situation. Amin. Behav. 17:692–699.Google Scholar
  14. Bateson, P. P. G., and Wainwright, A. A. P. (1972). Effects of prior exposure to light on the imprinting process in domestic chicks. Behaviour 42:279–290.PubMedGoogle Scholar
  15. Becker-Charus, C., Buchholz, C., Etienne, A., Franck, D., Medioni, J., Schoene, H., Sevenster, P., Stamm, R. A., and Tschanz, B. (1972). Motivation, Handlungsbereitschaft, Trieb. Z. Tierpsychol. 30:321–326.Google Scholar
  16. Bischof, H.-J. (1979). A model of imprinting evolved from neurophysiological concepts. Z. Tierpsychol. 51:126–139.PubMedGoogle Scholar
  17. Blakemore, C. (1978). Maturation and modification in the developing visual system. In Held, R., Leibowitz, H., and Teuber, H. L. (eds.), Handbook of Sensory Physiology, Perception, Springer, Berlin, pp. 377–436.Google Scholar
  18. Blakemore, C., and Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature 228:477–478.PubMedGoogle Scholar
  19. Blakemore, C., and Hillman, P. (1977). An attempt to assess the effect of monocular deprivation and strabismus on synaptic efficiency in the kitten’s visual cortex. Exp. Brain Res. 30:187–202.PubMedGoogle Scholar
  20. Blakemore, C., and VanSluyters, R. C. (1974). Reversal of the physiological effects of monocular deprivation in kittens: Further evidence for a sensitive period. J. Physiol. (Lond.) 237:195–216.Google Scholar
  21. Blakemore, C., and VanSluyters, R. C. (1975). Innate and environmental factors in the development of the kitten’s visual cortex. J. Physiol. (Lond.) 248:663–716.Google Scholar
  22. Blasdel, G. G., Mitchell, D. E., Muir, D. W., and Pettigrew, J. D. (1977). A physiological and behavioural study in cats of the effect of early visual experience with contours of a single orientation. J. Physiol. 265:615–636.PubMedGoogle Scholar
  23. Bliss, T. V. P., and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232:331–356.PubMedGoogle Scholar
  24. Bowlby, J. (1969). Attachment, Basic Books, New York.Google Scholar
  25. Bradley, P., Horn, G., and Bateson P. P. G. (1981). Imprinting: An electron microscopic study of the chick hyperstriatum ventrale. Exp. Brain Res. 41:115–120.PubMedGoogle Scholar
  26. Brown, R. T. (1974). Following and visual imprinting in ducklings across a wide age range. Dev. Psychobiol. 8:27–33.Google Scholar
  27. Buisseret, P., and Imbert, M. (1976). Visual cortical cells: Their developmental properties in normal and dark-reared kittens. J. Physiol. 255:511–525.PubMedGoogle Scholar
  28. Buisseret, P., Gary-Bobo, E., and Imbert, M. (1978). Ocular motility and recovery of ori-entational properties of visual cortical neurons in dark-reared kittens. Nature 272:816–817.PubMedGoogle Scholar
  29. Burke, W., and Griffin, A. E. (1977). Selective attention and responsiveness of the visual cortex. J. Physiol. 272:93–94.Google Scholar
  30. Cajal, S. R. (1955). Histologie du système nerveux, Vol. 2, Consejo Superior de Investigations Cientificas, Madrid.Google Scholar
  31. Campbell, B. A., and Spear, N. E. (1972). Ontogeny of memory. Physchol. Rev. 79:215–236.Google Scholar
  32. Changeux, J. P., and Mikoshiba, K. (1978). “Genetic” and “epigenetic” factors regulating synapse formation in vertebrate cerebellum and neuromuscular junction. In Corner, M. A., Baker, R. E., Van de Poll, N. E., Swaab, D. F. and Uylings, H. B. M. (eds.), Progress in Brain Research 48: Maturation of the Nervous System, Elsevier, Amsterdam, pp. 43–68.Google Scholar
  33. Cherfas, J. J., and Scott, A. (1981). Impermanent reversal of filial imprinting. Anim. Behav. 29:301.Google Scholar
  34. Chow, K. L., and Spear, P. D. (1974). Morphological and functional effects on visual deprivation on the rabbit visual system. Exp. Neurol. 42:429–447.PubMedGoogle Scholar
  35. Chow, K. F., and Steward, D. L. (1972). Reversal of structural and functional effects of long-term visual deprivation in cats. Exp. Neurol. 34:409–433.PubMedGoogle Scholar
  36. Cowan, W. M., and Clarke, P. G. H. (1976). The development of the isthmo-optic nucleus. Brain Behav. Evol. 13:345–375.PubMedGoogle Scholar
  37. Cragg, B. G. (1975). The development of synapses in the visual system of the cat. J. Comp. Neurol. 160:147–166.PubMedGoogle Scholar
  38. Craig, W. (1908). The voices of pigeons regarded as a means of social control. Am. J. Sociol. 14:86–100.Google Scholar
  39. Cynader, M. (1983). Prolonged sensitivity to monocular deprivation in dark-reared cats: Effects of age and visual exposure. Dev. Brain Res. 8:155–164.Google Scholar
  40. Cynader, M., Timmey, B., and Mitchell, D. E. (1980). Period of susceptibility of kitten visual cortex to the effects of monocular deprivation extends beyond six months of age. Brain Res. 191:545–550.PubMedGoogle Scholar
  41. Daw, N. W., and Wyatt, H. J. (1976). Kittens reared in an unidirectional environment: Evidence for a critical period. J. Physiol. 257:155–170.PubMedGoogle Scholar
  42. DeFeudis, F. V., and DeFeudis, P. A. F. (1977). Elements of the Behavioural Code, Academic Press, London.Google Scholar
  43. Fanz, R. L. (1957). Form preferences in the newly hatched chicks. J. Comp. Physiol. Psychol. 59:422–430.Google Scholar
  44. Fisher, G. (1966). The auditory stimulus in imprinting. J. Comp. Physiol. Psychol. 61:271–273.Google Scholar
  45. Fisher, G. (1970). Arousal and impairment: Temperature effects on following during imprinting. J. Comp. Physiol Psychol. 73:412–420.Google Scholar
  46. Freeman, R. D., and Bonds, A. B. (1979). Cortical plasticity in monocular deprived immobilized kittens depends on eye movement. Science 206:1093–1095.PubMedGoogle Scholar
  47. Freeman, R. D., and Marg, E. (1975). Visual acuity development coincides with the sensitive period in kittens. Nature 254:614–615.PubMedGoogle Scholar
  48. Freeman, R. D., and Olson, C. R. (1979). Is there a “consolidation” effect for monocular deprivation?. Nature 282:404–406.PubMedGoogle Scholar
  49. Fregnac, Y., and Imbert, M. (1978). Early development of visual cortical cells in normal and dark-reared kittens: relationship between orientation selectivity and ocular dominance. J. Physiol. (Lond.) 278:27–44.Google Scholar
  50. Freud, S. (1953). Three essays on sexuality. In Strackey, J. (ed.), The Standard Edition of the Complete Physiological Works, Hogarth Press, London.Google Scholar
  51. Gallagher, J. E. (1977). Sexual imprinting: A sensitive period in Japanese quail (Cothurnix cothurnix japonic a).J. Comp. Physiol. Psychol. 91:72–78.Google Scholar
  52. Goodwin, E. B., and Hess, E. H. (1969). Innate visual form preferences in the imprinting of hatchling chicks. Behaviour 34:223–237.PubMedGoogle Scholar
  53. Gordon, B., Presson, J., Packwood, J., and Scheer, J. (1979). Alteration of cortical orientation selectivity: Importance of assymetric input. Science 204:1109–1111.PubMedGoogle Scholar
  54. Gottlieb, G. (1961). Developmental age as a baseline for determination of the critical period in imprinting. J. Comp. Physiol. Psychol. 54:422–427.PubMedGoogle Scholar
  55. Gottlieb, G. (1980). Development of species identification in ducklings: VI. Specific embryonic experience required to maintain species typical perception in Peking ducklings. J. Comp. Physiol. Psychol. 94:579–584.PubMedGoogle Scholar
  56. Gottlieb, G. (1981). Development of species identification in ducklings: VIII. Embryonic versus postnatal critical period for the maintenance of species-typical perception. J. Comp. Physiol. Psychol. 95:540–547.PubMedGoogle Scholar
  57. Gottlieb, G. (1982). Development of species identification in ducklings: IX. The necessity of experiencing normal variations in embryonic auditory stimulation. Dev. Psychobiol. 15:507–517.PubMedGoogle Scholar
  58. Gottlieb, G., and Klopfer, P. H. (1962). The relation of developmental age to auditory and visual imprinting. J. Comp. Physiol. Psychol. 55:821–826.PubMedGoogle Scholar
  59. Gray, P. H. (1961). The releasers of imprinting: Differential reactions to colour as a function of maturation. J. Comp. Physiol. Psychol. 54:597–601.PubMedGoogle Scholar
  60. Greengard, P., and Kebabian, J. W. (1974). Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Fed. Proc. 32:1059–1066.Google Scholar
  61. Greenough, W. T. (1976). Enduring effects of differential experience and training. In Rosenzweig, R. L., and Bennet, E. L. (eds.). Neural Mechanisms of Learning and Memory, MIT Press, Cambridge, Massachusetts, pp. 255–278.Google Scholar
  62. Greenough, W. T. (1978). Development and memory: The synaptic connection. In Teyler, T. J. (ed.), Brain and Learning, Reidel, Dordrecht, Holland, pp. 127–145.Google Scholar
  63. Grobstein, P., and Chow, K. L. (1975). Receptive field development and individual experience. Science 190:352–358.PubMedGoogle Scholar
  64. Güttinger, H. R. (1979). The integration of learnt and genetically programmed behaviour: A study of hierarchical organization in songs of canaries, greenfinches, and their hybrids. Z. Tierpsychol. 49:285–303.Google Scholar
  65. Hamori, J. (1980). Plasticity during neuronal differentiaion: An experimental morphological study of developing synapses and of neuronal networks. In Tsukuda, Y., and Agranoff, B. W. (eds.), Neurobiologies Basis of Learning and Memory, Wiley, New York, pp. 1–18.Google Scholar
  66. Hebb, D. O. (1949). The Organization of Behaviour, Wiley, New York.Google Scholar
  67. Heinroth, O. (1910). Beiträge zur Biologie, namentlich Ethologie und Psychologie der Anatiden. Verh. 5. Int. Orn. Congress 5:589–702.Google Scholar
  68. Hess, E. (1973). Imprinting, Van Nostrand Reinhold, New York.Google Scholar
  69. Hillesheim, S. (1967). Occlusionsbehandlung bei Amblyopie mit exzentrischer Fixation. Doctoral Thesis, University of Hamburg.Google Scholar
  70. Hirsch, H. V. B., and Spinelli, D. N. (1970). Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168:869–871.PubMedGoogle Scholar
  71. Hirsch, H. V. B., and Spinelli, D. N. (1971). Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp. Brain Res. 13:509–527.Google Scholar
  72. Hoffman, H. S., and Ratner, A. M. (1973). A reinforcement model of imprinting: Implications to socialisation in monkeys and man. Psychol. Rev. 80:527–544.Google Scholar
  73. Hohmann, A., and Creutzfeld, O. (1975). Squint and the development of binocularity in humans. Nature 254:613–614.PubMedGoogle Scholar
  74. Horn, G. (1981). Neural mechanisms of learning: An analysis of imprinting in the domestic chick. Proc. R. Soc. Lond. 213:101–137.PubMedGoogle Scholar
  75. Horn, G., Rose, S. P. R., and Bateson, P. P. G. (1973). Experience and plasticity in the central nervous system. Science 181:506–514.PubMedGoogle Scholar
  76. Horn, G., Rose, S. P. R., and Bateson, P. P. G. (1979). Experience and plasticity in the central nervous system. In Russell, J. S., van Hof, M. W., and Berlucci, G. (eds.), Structure and Function of Cerebral Commissures, Macmillan, London, pp. 111–134.Google Scholar
  77. Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160:106–154.Google Scholar
  78. Hubel, D. H., and Wiesel, T. N. (1963). Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26:994–1002.PubMedGoogle Scholar
  79. Hubel, D. H., and Wiesel, T. N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28:1041–1059.PubMedGoogle Scholar
  80. Hubel, D. H., and Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195:215–243.Google Scholar
  81. Hubel, D. H., and Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206:419–436.Google Scholar
  82. Hubel, D. H., Wiesel, T. N., and LeVay, S. (1977). Plasticity of ocular dominance columns in the monkey striate cortex. Phil. Trans. R. Soc. Lond. B 278:377–409.Google Scholar
  83. Hutchinson, R. E., and Bateson, P. (1982). Sexual imprinting in male Japanese quail: The effects of castration and hatching. Dev. Psychobiol. 15:471–478.Google Scholar
  84. Imbert, M., and Buisseret, P. (1975). Receptive field characteristics and plastic properties of visual cortical cells in kittens reared with or without visual experience. Exp. Brain Res. 22:25–36.PubMedGoogle Scholar
  85. Immelmann, K. (1969). Über den Einfluss frühkindlicher Erfahrungen auf die geschlechtliche Objektfixierung bei Estrildiden. Z. Tierpsychol. 26:677–691.Google Scholar
  86. Immelmann, K. (1972). The influence of early experience upon the development of social behaviour in estrildide finches. In Proceedings of the XV th International Ornithological Congress, pp. 317–338.Google Scholar
  87. Immelmann, K. (1979). Genetical constraints on early learning: A perspective from sexual imprinting in birds. In Royce, J. R., and Mos, L. P. (eds.), Theoretical Advances in Behaviour Genetics, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, pp. 121–136.Google Scholar
  88. Immelmann, K., and Suomi, S. (1981). Sensitive phases in development. In Immelmann, K., Barlow, G. W., Petrinovich, L., and Main, M. (eds.), Behavioral Development. The Bielefeld Interdisciplinary Project. Cambridge University Press, Cambridge, pp. 395–431.Google Scholar
  89. Jacobson, M. (1971). Developmental Neurobiology, Holt, Reinhart and Winston, New York.Google Scholar
  90. Kasamatsu, T., and Heggelund, P. (1982). Single cell responses in cat visual cortex to visual stimulation during iontophoresis of noradrenaline. Exp. Brain Res. 45:317–327PubMedGoogle Scholar
  91. Kasamatsu, T., and Pettigrew, J. D., (1976). Depletion of brain catecholamines: Failure of ocular dominance shift after monocular occlusion in kittens. Science 194:206–209.PubMedGoogle Scholar
  92. Kasamatsu, T., and Pettigrew, J. D. (1979). Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine. J. Comp. Neurol. 185:139–162.PubMedGoogle Scholar
  93. Kasamatsu, T., Pettigrew, J. D., and Ary, M.-L. (1979). Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J. Comp. Neurol. 185:163–181.PubMedGoogle Scholar
  94. Kasamatsu, T., Pettigrew, J. D., and Ary, M.-L. (1981). Cortical recovery from effects of monocular deprivation: Acceleration with norepinephrine and suppression with 6-hydroxydopamine. J. Neurosci. 45:254–266.Google Scholar
  95. Klingel, H., and Klingel, U. (1966). Geburt eines Zebras. Z. Tierpsychol. 23:72–76.PubMedGoogle Scholar
  96. Klinghammer, E. (1967). Factors influencing choice of mate in altricial birds. In Stevenson, H. E., Hess, E. H., and Rheingold, H. J. (eds.), Early Behavior. Comparative and Developmental Approaches, Wiley, New York, pp. 5–42.Google Scholar
  97. Kohsaka, S., Takamatsu, K., Aoki, E., and Tsukada, Y. (1979). Metabolic mapping of chick brain after imprinting using 14C-deoxyglucose. Brain Res. 172:539–544.PubMedGoogle Scholar
  98. Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. Tierpsychol. 22:770–783.PubMedGoogle Scholar
  99. Konishi, M., and Nottebohm, F. (1969). Experimental studies in the ontogeny of avian vocalization. In Hinde, R. A. (ed.), Bird Vocalization, Cambridge University Press, Cambridge, pp. 29–48.Google Scholar
  100. Kovach, J. K. (1964). Effects of autonomic drugs on imprinting. J. Comp. Physiol. 57:183 – 187.Google Scholar
  101. Kovach, J. K. (1979). Genetic influence and genotype-environment interaction in perceptual imprinting. Behaviour 38:31–60.Google Scholar
  102. Kovach, J. K., and Hess, E. H. (1963). Imprinting: Effects of painful stimulation upon the following response. J. Comp. Physiol. 56:461–464.Google Scholar
  103. Kratz, K. E., and Lehmkuhle, S. (1983). Spatial contrast sensitivity of monocularly deprived cats after removal of the nondeprived eye. Behav. Brian Res. 7:261–266.Google Scholar
  104. Kratz, K. E., Spear, P. D., and Smith, D. D. (1976). Postcritical period reversal of effects of monocular deprivation on striate cortex cells in the cat. J. Neurophysiol. 39:501–511.PubMedGoogle Scholar
  105. Kroodsma, D., and Pickert, R. (1980). Environmentally dependent sensitive periods for avian vocal learning. Nature 288:1477–478.Google Scholar
  106. Leidermann, P. H. (1981). Human motherinfant social bonding: Is there a sensitive period?. In Immelmann, K., Barlow, G. W., Petrinovich, L., and Main,M. (eds.), Behavioural Development: The Bielefeld Interdisciplinary Project, Cambridge University Press, Cambridge, pp. 454–470.Google Scholar
  107. Le Vay, S., and Stryker, M. P. (1979). The development of ocular dominance columns in the cat. In Ferrendelli, J. A. (ed.), Society for Neuroscience Symposia IV. Aspects of Developmental Neurobiology, Society for Neuroscience, Bethesda, Maryland, pp. 83 – 98.Google Scholar
  108. Le Vay, S., Stryker, M. P., and Shatz, C. J. (1978). Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study. J. Comp. Neurol. 179:223–244.Google Scholar
  109. Leventhal, A. G., and Hirsch, H. V. B. (1983). Effects of visual deprivation upon the geniculocortical W-cell pathway in the cat: Area 19 and its efferent input. J. Comp. Neurol. 213:59–71.Google Scholar
  110. Levitt, F. B., VanSluyters, R. C. (1982). The sensitive period for strabismus inthe kitten. Dev. Brain Res. 3:323–327.Google Scholar
  111. Libet, B., Kobayashi, H., and Tanaka, T. (1975). Synaptic coupling into the production and storage of memory trace. Nature 258:155–157.PubMedGoogle Scholar
  112. Lippe, W. R. (1976). Innate and experimental factors in the development of the visual system: Historical basis of current controversy. In Gottlieb, G. (ed.), Neural and Behavioral Specificity, Academic Press, New York, pp. 5–24.Google Scholar
  113. Livingstone, M. S., and Hubel, D. H. (1981). Effects of sleep and arousal on the processing of visual informatin in the cat. Nature 291:554.PubMedGoogle Scholar
  114. London, J. A., and Greenough, W. T. (1982). Evoked potential evidence for a stripe-rearing effect on rat visual cortex. Physiol. Psychol. 10:51–54.Google Scholar
  115. Lorenz, K. (1935). Der Kumpan in der Umwelt des Vogels. J. Ornithol. 83:137–213, 289–413.Google Scholar
  116. Lund, R. D. (1978). Development and Plasticity of the Brain, Oxford University Press, New York.Google Scholar
  117. Lynch, G., Gall, C., Rose, G., and Cotman, C. (1976). Changes in the distribution of the dentate gyrus associational system following unilateral or bilateral entorhinal lesions in the adult cat. Brain Res. 10:57–71.Google Scholar
  118. Marler, P., and Peters, S. (1977). Selective vocal learning in a sparrow. Science 198:519 – 521.PubMedGoogle Scholar
  119. Marler, P., and Peters, S. (1981). Sparrows learn adult song and more from memory. Science 213:780–782.PubMedGoogle Scholar
  120. Marler, P., and Peters, S. (1982). Developmental overproduction and selective attrition: New processes in the epigenesis of birdsong. Dev. Psychobiol. 15:369–378.PubMedGoogle Scholar
  121. Martin, J. T. (1975). Hormonal influences in the evolution and ontogeny of imprinting behaviour in the duck. In Gispen, W. H., von Wimersma-Greidamis, T. B., Bohus, B. and de Wied, D. (eds.), Progress in Brain Research 42: Hormones, Homoeostasis and the Brain, Elsevier, Amsterdam, pp. 357–366.Google Scholar
  122. Martin, J. T., and Delanerolle, N. (1979). Avian archistriatal control of fear-motivated behavior and adrenocortical function. Behav. Processes 4:283–293.Google Scholar
  123. Martin, J. T., and Schutz, F. (1974). Arousal and temporal factors in imprinting in mallards. Dev. Psychobiol. 7:69–78.Google Scholar
  124. McCabe, B. J., Cipolla-Neto, J., Horn, G., and Bateson, P. P. G. (1979). Brain lesions and imprinting. Neurosci. Lett. 3:381.Google Scholar
  125. Metcalfe, J. (1976). The influence of incubatory photic stimuli on chick’s visual intensity preference for approach behavior. Dev. Psychobiol. 9:49–55.PubMedGoogle Scholar
  126. Moltz, H., and Stettner, L. J. (1961). The influence of patterned light deprivation on the critical period for imprinting. J. Comp. Physiol. Psychol. 54:279–283.PubMedGoogle Scholar
  127. Moore, R. J., Björklund, H., and Stenevi, U. (1971). Changes in the adrenergic innervation of the rat septal area in response to denervation. Brain Res. 33:13–35.PubMedGoogle Scholar
  128. Mountcastle, V. B. (1979). An organizing principle for cerebral function: The unit module and the distributed systems. In Schmitt, F. O., and Worden, F. G. (eds.), The Neurosciences 4th Study Program, MIT Press, Cambridge, Massachusetts, pp. 21–42.Google Scholar
  129. Nottebohm, F. (1980). Brain pathways for vocal learning in birds: A review of the first ten years. Prog. Psychobiol. Physiol. Psychol. 9:85–124.Google Scholar
  130. Nottebohm, F., and Goldman, S. A. (1983). Connectivity and kinetics of neurons born in adulthood. Soc. Neurosci. Conf. Ahstr. 40:2.Google Scholar
  131. Nygren, L. G., Olson, L., and Sieger, S. (1971). Regeneration of monoamine-containing neurons in the developing and adult spinal chord following intraspinal 6-hydroxydo-pamine injections or transsections. Histochemie 28:1–16.PubMedGoogle Scholar
  132. Oppenheim, R. W. (1982). Präformation und Epigenese in der Entwicklung des Nervensystems und des Verhaltens: Probleme, Begriffe und ihre Geschichte. In Immelmann, K., Barlow, G., Petrinovich, L., and Main, M. (eds.). Verhaltensentwicklung bei Mensch und Tier. Das Bielefeld-Projekt, Paul Parey, Berlin, pp. 157–221.Google Scholar
  133. Oyama, S. (1979). The concept of the sensitive period in developmental studies. Merill Palmer Q. 25:83–103.Google Scholar
  134. Parnavelas, J. G., Globus, A., and Kaups, P. (1973). Continuous illumination from birth affects spine density of neurons in the visual cortex of the rat. Exp. Neurol. 40:742–747.PubMedGoogle Scholar
  135. Pettigrew, J. D. (1974). The effect of visual experience on the development of stimulus specificity by kitten cortical neurons. J. Physiol. (Lond.) 237:49–74.Google Scholar
  136. Pettigrew, J. D. (1978). The paradox of critical period for striate cortex. In Cotman, C. W. (ed.), Neuronal Plasticity, Raven Press, New York, pp. 311–330.Google Scholar
  137. Pettigrew, J. D., and Garey, L. J. (1974). Selective modification of single neuron properties in the visual cortex of kittens. Brain Res. 66:160–164.Google Scholar
  138. Pettigrew, J. D., and Konishi, M. (1976). Effect of monocular deprivation on binocular neurons in the owl’s visual wulst. Nature 264:753–754.PubMedGoogle Scholar
  139. Pitz, G. G., and Ross, R. B. (1961). Imprinting as a function of arousal. J. Comp. Physiol. 54:602–604.Google Scholar
  140. Prestige, M. C. (1970). Differentiation, degeneration and the role of the periphery: Quantitative consideration. In Schmitt, F. O. (ed.), The Neurosciences 2nd Study Program, MIT Press, Cambridge, Massachusetts, pp. 73–82.Google Scholar
  141. Pröve, E. (1983a). Hormonal correlates of behavioural development in male zebra finches. In Balthazart, J., Prove, E., and Gilles, R. (eds.), Hormones and Behaviour in Higher Vertebrates, Springer, Berlin, pp. 368–374.Google Scholar
  142. Pröve, E. (1983b). Der Einfluss von Steroiden auf die sexuelle Prägung männlicher Zebrafinken (Taeniopygia guttata castanotis GOULD). Verh. Dtsch. Zool. Ges. 1983:256.Google Scholar
  143. Racic, P. (1977). Prenatal development of visual system in the rhesus monkey. Phil. Trans. R. Soc. Lond. B 278:245–260.Google Scholar
  144. Racic, P. (1981). Development of visual centers in the primate brain depends on binocular competition before birth. Science 214:928–930.Google Scholar
  145. Ramachandran, V. S., and Ary, M. (1982). Evidence for a “consolidation” effect during changes in ocular dominance of cortical neurons in kittens. Behav. Neural Biol. 35:211–216.PubMedGoogle Scholar
  146. Rausch, G., and Scheich, H. (1982). Dendritic spine loss and enlargement during maturation of the speech control system in the mynah bird (Gracula religiosa). Neurosci. Lett. 29:129–133.PubMedGoogle Scholar
  147. Rauschecker, J. P. (1982). Instructive changes in the kitten’s visual cortex and their limitations. Exp. Brain Res. 48:301–305.PubMedGoogle Scholar
  148. Rauschecker, J. P., and Singer, W. (1979). Changes in the circuitry of the kitten’s visual cortex are gated by postsynaptic activity. Nature 280:58–60.PubMedGoogle Scholar
  149. Rauschecker, J. P., and Singer, W. (1981), The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. J. Physiol. (Lond.) 310:215–239.Google Scholar
  150. Rauschecker, J., and Singer, W. (1982). Binocular deprivation can erase the effects of preceding monocular or binocular vision in kitten cortex. Dev. Brain Res. 4:495–498.Google Scholar
  151. Rose, S. P. R. (1981). From causations to translations: What biochemists can contribute to the study of behaviour. In Bateson, P. P. G., and Klopfer, P. H. (eds.), Perspectives in Ethology IV. Advantages of Diversity, Plenum Press, New York, pp. 157–176.Google Scholar
  152. Rosenzweig, M. R., and Bennet, E. L. (1976). Neural Mechanisms of Learning and Memory, MIT Press, Cambridge, Massachusetts.Google Scholar
  153. Rosenzweig, M. R., Bennett, E. L., and Diamond, M. C. (1972). Brain changes in response to experience. Sci. Am. 226:22–29.Google Scholar
  154. Ruiz-Marcos, A., and Valverde, F. (1969). The temporal evolution of the distribution of dendritic spines in the visual cortex of normal and dark-raised mice. Exp. Brain Res. 8:284–294.PubMedGoogle Scholar
  155. Sackett, G. P., Porter, M., and Holmes, H. (1965). Choice behavior in rhesus monkeys: Effects of stimulation during the first month of life. Science 147:304–406.Google Scholar
  156. Salzen, E. A., and Meyer, C. C. (1968). Reversibility of imprinting. J. Comp. Physiol. Psychol. 66:269–275.PubMedGoogle Scholar
  157. Schlag, J., and Schlag-Rey, M. (1983). Thalamic units firing upon refixation may be responsible for plasticity in visual cortex. Exp. Brain Res. 50:146–148.PubMedGoogle Scholar
  158. Schutz, F. (1965). Sexuelle Prägung bei Anatiden. Z. Tierpsychol. 22:50–103.PubMedGoogle Scholar
  159. Scott, J. P. (1978). Critical Periods, Dowden, Hutchinson and Ross, Stroudsberg, Pennsylvania.Google Scholar
  160. Sherk, H., and Stryker, M. P. (1976). Quantitative study of cortical orientation selectivity in visually inexperienced kittens. J. Neurophysiol. 39:63–70.PubMedGoogle Scholar
  161. Singer, W. (1976). Modification of orientation and direction selectivity in visually inexperienced kittens. Brain Res. 118:460–468.PubMedGoogle Scholar
  162. Singer, W. (1979a). Central core control of visual cortex functions. In Schmitt, F. O., and Worden, F. G. (eds.). The Neurosciences 4th Study Program, MIT Press, Cambridge, Massachusetts, pp. 1093–1110.Google Scholar
  163. Singer, W. (1979b). The role of matching operations between pre- and postsynaptic activity in experience-dependent modifications of visual cortex functions. In Meisami, E., and Brazier, M. A. B. (eds.), Neural Growth and Differentiation, Raven Press, New York, pp. 295–309.Google Scholar
  164. Singer, W. (1982). Recovery mechanisms in the mammaliam brain. In Nicholls, J. G., (ed.). Repair and Regeneration of the Nervous System. Dahlem Konferenzen 1982, SPringer, Berlin, pp. 203–226.Google Scholar
  165. Singer, W., Tretter, F., and Yinon, U. (1979). Inverted vision causes selective loss of striate cortex neurons with binocular, vertically oriented receptive fields. Brain Res. 170:177 – 181.PubMedGoogle Scholar
  166. Singer, W., Tretter, F., and Yinon, U. (1982a). Central gating of developmental plasticity in kitten visual cortex. J. Physiol. 324:221–237.PubMedGoogle Scholar
  167. Singer, W., Tretter, F., and Yinon, U. (1982b). Evidence for long-term functional plasticity in the visual cortex of adult cats. J. Physiol. 324:239–248.PubMedGoogle Scholar
  168. Sireteanu, R. (1982). Binocular vision in strabismic humans with alternating fixation. Vision Res. 22:889–896.PubMedGoogle Scholar
  169. Sjölander, S. (1978). A methodological critique of imprinting. In Nöhring, R. (ed.), Acta XVII. Congressus Internationalis Ornitologici, Verlag D. O. G., Berlin, pp. 847–850.Google Scholar
  170. Spemann, H. (1938). Embryonic Development and Induction, Yale University Press, New Haven.Google Scholar
  171. Spinelli, D. N., Hirsch, H. V. B., Phelps, R. W., and Metzler, J. (1972). Visual experience as a determinant of the response characteristics of cortical receptive fields in cats. Exp. Brain Res. 15:289–304.PubMedGoogle Scholar
  172. Spinelli, D. N., Jensen, F. E., and Viana di Prisco, G. (1980). Early experience effect on dendritic branching normally reared kittens. Exp. Neurol. 68:1–11.PubMedGoogle Scholar
  173. Stenevi, U., Björklund, A., and Moore, R. Y. (1973). Morphological plasticity of central adrenergic neurons. Brain Behav. Evol. 8:110–134.Google Scholar
  174. Stent, G. S. (1973). A physiological mechanism for Hebb’s postulate on learning. Proc. Natl. Acad. Sci. USA 70:997–1001.PubMedGoogle Scholar
  175. TenCate, C. (1982). Behavioural differences between zebra finch and Bengalese finch (foster) parents raising zebra finch offspring. Behaviour 81:152–172.Google Scholar
  176. Teuchert, G., Wolff, J. R., and Immelmann, K. (1982). Physiologische Degeneration in der Ontogenese des ZNS von Vögeln: Eine Einflussnahme auf die sensible Phase für Prägung?. Werk. Dtsch. Zool. Ges. 1982:259.Google Scholar
  177. Todt, D., Hultsch, H., and Heike, D. (1979). Conditions affecting song acquisition in nightingales (Luscinia megarhynchos L.). Z. Tierpsychol. 51:23–35.Google Scholar
  178. Vidal, J.-M. (1980). The relations between filial and sexual imprinting in the domestic fowl: Effects of age and social experience. Anim. Behav. 28:880–891.Google Scholar
  179. Waddington, C. H. (1957). The Strategy of the Genes, Allen and Unwin, London.Google Scholar
  180. Wall, P. D. (1977). The presence of ineffective synapses and the circumstances which unmask them. Phil. Trans. R. Soc. Lond. B 278:361–372.Google Scholar
  181. Wark, R. C., and Peck, C. K. (1982). Behavioral consequences of early visual exposure to contours of a single orientation. Dev. Brain Res. 5:218–221.Google Scholar
  182. Weiss, J., Koehler, W., and Landsberg, J. W. (1977). Increase of the corticosterone level in ducklings during the sensitive period of the following response. Dev. Psychobiol. 10:59–64.PubMedGoogle Scholar
  183. Wiesel, T. N., and Hubel, D. H. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28:1029–1040.PubMedGoogle Scholar
  184. Wolff, J. R. (1981). Some morphogenetic aspects of the development of the central nervous system. In Immelmann, K., Barlow, G. W., Petrinovich, L., and Main, M. (eds.), Behavioural Development: The Bielefeld Interdisciplinary Project, Cambridge University Press, Cambridge, pp. 164–190.Google Scholar
  185. Zihl, J. (1981). Recovery of visual functions in patients with cerebral blindness. Effects of specific practice with saccadic localization. Exp. Brain Res. 44:159–169.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Hans-Joachim Bischof
    • 1
  1. 1.Department of EthologyUniversity of BielefeldBielefeld 1West Germany

Personalised recommendations