Skip to main content

Environmental Influences on Early Development: A Comparison of Imprinting and Cortical Plasticity

  • Chapter
Perspectives in Ethology

Abstract

A comparison of results in imprinting research and studies of the developmental neurobiology of the visual cortex reveals striking similarities. In both areas information from the environment can only be stored during a sensitive period. The position of this sensitive period seems to be dependent to a certain degree on the developmental stage of the animal. The shape of the sensitivity curve is similar in all cases. Beyond the end of the sensitive period, new information can be superimposed on but cannot alter information acquired in early development. Storage of “normal” stimuli is facilitated by a certain preorganization of the receiving brain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agren, G., and Meyerson, B.J. (1979). Long term effects of social deprivation during early adulthood in the Mongolian gerbil (Meriones unguiculatus). Z. Tierpsychol. 47:422–431.

    Google Scholar 

  • Apfelbach, R., and Rehn, B. (1983). Nahrungsprägung und Entwicklung des Riechsystems beim Frettchen. Verh. Dtsch. Zool. Ges. 1983:263.

    Google Scholar 

  • Banks, M. S., Aslin, R. N., and Letson, R. D. (1975). Sensitive period for the development of human binocular vision. Science 190:675–677.

    PubMed  CAS  Google Scholar 

  • Barlow, H. B. (1975). Visual experience and cortical development. Nature 258:199–204.

    PubMed  CAS  Google Scholar 

  • Bateson, P. P. G. (1966). The characteristics and context of imprinting. Biol. Rev. 41:177–220.

    PubMed  CAS  Google Scholar 

  • Bateson, P. P. G. (1978). Early experience and sexual preference. In Hutchinson, J. B. (ed.), Biological Determinants of Sexual Behaviour, Wiley, London, pp. 29–53

    Google Scholar 

  • Bateson, P. P. G. (1979a). Sexual imprinting and optimal outbreeding. Nature 273:659–660.

    Google Scholar 

  • Bateson, P. P. G. (1979b). How do sensitive periods arise and what are they for? Anim. Behav. 27:470–486.

    Google Scholar 

  • Bateson, P. P. G. (1980). Rules and reciprocity in behavioural development. In Bateson, P. P. G., and Hinde, R. A (eds.), Growing Points in Ethology, Cambridge University Press, Cambridge, pp. 401–421.

    Google Scholar 

  • Bateson, P. P. G. (1981). The control of sensitivity to the environment during development. In Immelmann, K., Barlow, G. W., Petrinovich, L., and Main, M. (eds.), Behavioural Development: The Bielefeld Interdisciplinary Project, Cambridge University Press, Cambridge, pp. 432–452.

    Google Scholar 

  • Bateson, P. P. G. (1983a). The interpretation of sensitive periods. In Oliverio, A., and Zapella, M. (eds.), The Behavior of Human Infants, Plenum Press, New York, pp. 57 – 70.

    Google Scholar 

  • Bateson, P. P. G. (1982b). Preferences for cousins in Japanese quail. Nature 295:236–237.

    Google Scholar 

  • Bateson, P. P. G., and Reese, F. D. (1969). The reinforcing properties of conspicious stimuli in the imprinting situation. Amin. Behav. 17:692–699.

    Google Scholar 

  • Bateson, P. P. G., and Wainwright, A. A. P. (1972). Effects of prior exposure to light on the imprinting process in domestic chicks. Behaviour 42:279–290.

    PubMed  CAS  Google Scholar 

  • Becker-Charus, C., Buchholz, C., Etienne, A., Franck, D., Medioni, J., Schoene, H., Sevenster, P., Stamm, R. A., and Tschanz, B. (1972). Motivation, Handlungsbereitschaft, Trieb. Z. Tierpsychol. 30:321–326.

    Google Scholar 

  • Bischof, H.-J. (1979). A model of imprinting evolved from neurophysiological concepts. Z. Tierpsychol. 51:126–139.

    PubMed  CAS  Google Scholar 

  • Blakemore, C. (1978). Maturation and modification in the developing visual system. In Held, R., Leibowitz, H., and Teuber, H. L. (eds.), Handbook of Sensory Physiology, Perception, Springer, Berlin, pp. 377–436.

    Google Scholar 

  • Blakemore, C., and Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature 228:477–478.

    PubMed  CAS  Google Scholar 

  • Blakemore, C., and Hillman, P. (1977). An attempt to assess the effect of monocular deprivation and strabismus on synaptic efficiency in the kitten’s visual cortex. Exp. Brain Res. 30:187–202.

    PubMed  CAS  Google Scholar 

  • Blakemore, C., and VanSluyters, R. C. (1974). Reversal of the physiological effects of monocular deprivation in kittens: Further evidence for a sensitive period. J. Physiol. (Lond.) 237:195–216.

    CAS  Google Scholar 

  • Blakemore, C., and VanSluyters, R. C. (1975). Innate and environmental factors in the development of the kitten’s visual cortex. J. Physiol. (Lond.) 248:663–716.

    CAS  Google Scholar 

  • Blasdel, G. G., Mitchell, D. E., Muir, D. W., and Pettigrew, J. D. (1977). A physiological and behavioural study in cats of the effect of early visual experience with contours of a single orientation. J. Physiol. 265:615–636.

    PubMed  CAS  Google Scholar 

  • Bliss, T. V. P., and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232:331–356.

    PubMed  CAS  Google Scholar 

  • Bowlby, J. (1969). Attachment, Basic Books, New York.

    Google Scholar 

  • Bradley, P., Horn, G., and Bateson P. P. G. (1981). Imprinting: An electron microscopic study of the chick hyperstriatum ventrale. Exp. Brain Res. 41:115–120.

    PubMed  CAS  Google Scholar 

  • Brown, R. T. (1974). Following and visual imprinting in ducklings across a wide age range. Dev. Psychobiol. 8:27–33.

    Google Scholar 

  • Buisseret, P., and Imbert, M. (1976). Visual cortical cells: Their developmental properties in normal and dark-reared kittens. J. Physiol. 255:511–525.

    PubMed  CAS  Google Scholar 

  • Buisseret, P., Gary-Bobo, E., and Imbert, M. (1978). Ocular motility and recovery of ori-entational properties of visual cortical neurons in dark-reared kittens. Nature 272:816–817.

    PubMed  CAS  Google Scholar 

  • Burke, W., and Griffin, A. E. (1977). Selective attention and responsiveness of the visual cortex. J. Physiol. 272:93–94.

    Google Scholar 

  • Cajal, S. R. (1955). Histologie du système nerveux, Vol. 2, Consejo Superior de Investigations Cientificas, Madrid.

    Google Scholar 

  • Campbell, B. A., and Spear, N. E. (1972). Ontogeny of memory. Physchol. Rev. 79:215–236.

    CAS  Google Scholar 

  • Changeux, J. P., and Mikoshiba, K. (1978). “Genetic” and “epigenetic” factors regulating synapse formation in vertebrate cerebellum and neuromuscular junction. In Corner, M. A., Baker, R. E., Van de Poll, N. E., Swaab, D. F. and Uylings, H. B. M. (eds.), Progress in Brain Research 48: Maturation of the Nervous System, Elsevier, Amsterdam, pp. 43–68.

    Google Scholar 

  • Cherfas, J. J., and Scott, A. (1981). Impermanent reversal of filial imprinting. Anim. Behav. 29:301.

    Google Scholar 

  • Chow, K. L., and Spear, P. D. (1974). Morphological and functional effects on visual deprivation on the rabbit visual system. Exp. Neurol. 42:429–447.

    PubMed  CAS  Google Scholar 

  • Chow, K. F., and Steward, D. L. (1972). Reversal of structural and functional effects of long-term visual deprivation in cats. Exp. Neurol. 34:409–433.

    PubMed  CAS  Google Scholar 

  • Cowan, W. M., and Clarke, P. G. H. (1976). The development of the isthmo-optic nucleus. Brain Behav. Evol. 13:345–375.

    PubMed  CAS  Google Scholar 

  • Cragg, B. G. (1975). The development of synapses in the visual system of the cat. J. Comp. Neurol. 160:147–166.

    PubMed  CAS  Google Scholar 

  • Craig, W. (1908). The voices of pigeons regarded as a means of social control. Am. J. Sociol. 14:86–100.

    Google Scholar 

  • Cynader, M. (1983). Prolonged sensitivity to monocular deprivation in dark-reared cats: Effects of age and visual exposure. Dev. Brain Res. 8:155–164.

    Google Scholar 

  • Cynader, M., Timmey, B., and Mitchell, D. E. (1980). Period of susceptibility of kitten visual cortex to the effects of monocular deprivation extends beyond six months of age. Brain Res. 191:545–550.

    PubMed  CAS  Google Scholar 

  • Daw, N. W., and Wyatt, H. J. (1976). Kittens reared in an unidirectional environment: Evidence for a critical period. J. Physiol. 257:155–170.

    PubMed  CAS  Google Scholar 

  • DeFeudis, F. V., and DeFeudis, P. A. F. (1977). Elements of the Behavioural Code, Academic Press, London.

    Google Scholar 

  • Fanz, R. L. (1957). Form preferences in the newly hatched chicks. J. Comp. Physiol. Psychol. 59:422–430.

    Google Scholar 

  • Fisher, G. (1966). The auditory stimulus in imprinting. J. Comp. Physiol. Psychol. 61:271–273.

    Google Scholar 

  • Fisher, G. (1970). Arousal and impairment: Temperature effects on following during imprinting. J. Comp. Physiol Psychol. 73:412–420.

    Google Scholar 

  • Freeman, R. D., and Bonds, A. B. (1979). Cortical plasticity in monocular deprived immobilized kittens depends on eye movement. Science 206:1093–1095.

    PubMed  CAS  Google Scholar 

  • Freeman, R. D., and Marg, E. (1975). Visual acuity development coincides with the sensitive period in kittens. Nature 254:614–615.

    PubMed  CAS  Google Scholar 

  • Freeman, R. D., and Olson, C. R. (1979). Is there a “consolidation” effect for monocular deprivation?. Nature 282:404–406.

    PubMed  CAS  Google Scholar 

  • Fregnac, Y., and Imbert, M. (1978). Early development of visual cortical cells in normal and dark-reared kittens: relationship between orientation selectivity and ocular dominance. J. Physiol. (Lond.) 278:27–44.

    CAS  Google Scholar 

  • Freud, S. (1953). Three essays on sexuality. In Strackey, J. (ed.), The Standard Edition of the Complete Physiological Works, Hogarth Press, London.

    Google Scholar 

  • Gallagher, J. E. (1977). Sexual imprinting: A sensitive period in Japanese quail (Cothurnix cothurnix japonic a).J. Comp. Physiol. Psychol. 91:72–78.

    Google Scholar 

  • Goodwin, E. B., and Hess, E. H. (1969). Innate visual form preferences in the imprinting of hatchling chicks. Behaviour 34:223–237.

    PubMed  CAS  Google Scholar 

  • Gordon, B., Presson, J., Packwood, J., and Scheer, J. (1979). Alteration of cortical orientation selectivity: Importance of assymetric input. Science 204:1109–1111.

    PubMed  CAS  Google Scholar 

  • Gottlieb, G. (1961). Developmental age as a baseline for determination of the critical period in imprinting. J. Comp. Physiol. Psychol. 54:422–427.

    PubMed  CAS  Google Scholar 

  • Gottlieb, G. (1980). Development of species identification in ducklings: VI. Specific embryonic experience required to maintain species typical perception in Peking ducklings. J. Comp. Physiol. Psychol. 94:579–584.

    PubMed  CAS  Google Scholar 

  • Gottlieb, G. (1981). Development of species identification in ducklings: VIII. Embryonic versus postnatal critical period for the maintenance of species-typical perception. J. Comp. Physiol. Psychol. 95:540–547.

    PubMed  CAS  Google Scholar 

  • Gottlieb, G. (1982). Development of species identification in ducklings: IX. The necessity of experiencing normal variations in embryonic auditory stimulation. Dev. Psychobiol. 15:507–517.

    PubMed  CAS  Google Scholar 

  • Gottlieb, G., and Klopfer, P. H. (1962). The relation of developmental age to auditory and visual imprinting. J. Comp. Physiol. Psychol. 55:821–826.

    PubMed  CAS  Google Scholar 

  • Gray, P. H. (1961). The releasers of imprinting: Differential reactions to colour as a function of maturation. J. Comp. Physiol. Psychol. 54:597–601.

    PubMed  CAS  Google Scholar 

  • Greengard, P., and Kebabian, J. W. (1974). Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Fed. Proc. 32:1059–1066.

    Google Scholar 

  • Greenough, W. T. (1976). Enduring effects of differential experience and training. In Rosenzweig, R. L., and Bennet, E. L. (eds.). Neural Mechanisms of Learning and Memory, MIT Press, Cambridge, Massachusetts, pp. 255–278.

    Google Scholar 

  • Greenough, W. T. (1978). Development and memory: The synaptic connection. In Teyler, T. J. (ed.), Brain and Learning, Reidel, Dordrecht, Holland, pp. 127–145.

    Google Scholar 

  • Grobstein, P., and Chow, K. L. (1975). Receptive field development and individual experience. Science 190:352–358.

    PubMed  CAS  Google Scholar 

  • Güttinger, H. R. (1979). The integration of learnt and genetically programmed behaviour: A study of hierarchical organization in songs of canaries, greenfinches, and their hybrids. Z. Tierpsychol. 49:285–303.

    Google Scholar 

  • Hamori, J. (1980). Plasticity during neuronal differentiaion: An experimental morphological study of developing synapses and of neuronal networks. In Tsukuda, Y., and Agranoff, B. W. (eds.), Neurobiologies Basis of Learning and Memory, Wiley, New York, pp. 1–18.

    Google Scholar 

  • Hebb, D. O. (1949). The Organization of Behaviour, Wiley, New York.

    Google Scholar 

  • Heinroth, O. (1910). Beiträge zur Biologie, namentlich Ethologie und Psychologie der Anatiden. Verh. 5. Int. Orn. Congress 5:589–702.

    Google Scholar 

  • Hess, E. (1973). Imprinting, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Hillesheim, S. (1967). Occlusionsbehandlung bei Amblyopie mit exzentrischer Fixation. Doctoral Thesis, University of Hamburg.

    Google Scholar 

  • Hirsch, H. V. B., and Spinelli, D. N. (1970). Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168:869–871.

    PubMed  CAS  Google Scholar 

  • Hirsch, H. V. B., and Spinelli, D. N. (1971). Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp. Brain Res. 13:509–527.

    Google Scholar 

  • Hoffman, H. S., and Ratner, A. M. (1973). A reinforcement model of imprinting: Implications to socialisation in monkeys and man. Psychol. Rev. 80:527–544.

    Google Scholar 

  • Hohmann, A., and Creutzfeld, O. (1975). Squint and the development of binocularity in humans. Nature 254:613–614.

    PubMed  CAS  Google Scholar 

  • Horn, G. (1981). Neural mechanisms of learning: An analysis of imprinting in the domestic chick. Proc. R. Soc. Lond. 213:101–137.

    PubMed  CAS  Google Scholar 

  • Horn, G., Rose, S. P. R., and Bateson, P. P. G. (1973). Experience and plasticity in the central nervous system. Science 181:506–514.

    PubMed  CAS  Google Scholar 

  • Horn, G., Rose, S. P. R., and Bateson, P. P. G. (1979). Experience and plasticity in the central nervous system. In Russell, J. S., van Hof, M. W., and Berlucci, G. (eds.), Structure and Function of Cerebral Commissures, Macmillan, London, pp. 111–134.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160:106–154.

    CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. (1963). Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26:994–1002.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28:1041–1059.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195:215–243.

    CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206:419–436.

    CAS  Google Scholar 

  • Hubel, D. H., Wiesel, T. N., and LeVay, S. (1977). Plasticity of ocular dominance columns in the monkey striate cortex. Phil. Trans. R. Soc. Lond. B 278:377–409.

    CAS  Google Scholar 

  • Hutchinson, R. E., and Bateson, P. (1982). Sexual imprinting in male Japanese quail: The effects of castration and hatching. Dev. Psychobiol. 15:471–478.

    Google Scholar 

  • Imbert, M., and Buisseret, P. (1975). Receptive field characteristics and plastic properties of visual cortical cells in kittens reared with or without visual experience. Exp. Brain Res. 22:25–36.

    PubMed  CAS  Google Scholar 

  • Immelmann, K. (1969). Über den Einfluss frühkindlicher Erfahrungen auf die geschlechtliche Objektfixierung bei Estrildiden. Z. Tierpsychol. 26:677–691.

    Google Scholar 

  • Immelmann, K. (1972). The influence of early experience upon the development of social behaviour in estrildide finches. In Proceedings of the XV th International Ornithological Congress, pp. 317–338.

    Google Scholar 

  • Immelmann, K. (1979). Genetical constraints on early learning: A perspective from sexual imprinting in birds. In Royce, J. R., and Mos, L. P. (eds.), Theoretical Advances in Behaviour Genetics, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, pp. 121–136.

    Google Scholar 

  • Immelmann, K., and Suomi, S. (1981). Sensitive phases in development. In Immelmann, K., Barlow, G. W., Petrinovich, L., and Main, M. (eds.), Behavioral Development. The Bielefeld Interdisciplinary Project. Cambridge University Press, Cambridge, pp. 395–431.

    Google Scholar 

  • Jacobson, M. (1971). Developmental Neurobiology, Holt, Reinhart and Winston, New York.

    Google Scholar 

  • Kasamatsu, T., and Heggelund, P. (1982). Single cell responses in cat visual cortex to visual stimulation during iontophoresis of noradrenaline. Exp. Brain Res. 45:317–327

    PubMed  CAS  Google Scholar 

  • Kasamatsu, T., and Pettigrew, J. D., (1976). Depletion of brain catecholamines: Failure of ocular dominance shift after monocular occlusion in kittens. Science 194:206–209.

    PubMed  CAS  Google Scholar 

  • Kasamatsu, T., and Pettigrew, J. D. (1979). Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine. J. Comp. Neurol. 185:139–162.

    PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Pettigrew, J. D., and Ary, M.-L. (1979). Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J. Comp. Neurol. 185:163–181.

    PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Pettigrew, J. D., and Ary, M.-L. (1981). Cortical recovery from effects of monocular deprivation: Acceleration with norepinephrine and suppression with 6-hydroxydopamine. J. Neurosci. 45:254–266.

    CAS  Google Scholar 

  • Klingel, H., and Klingel, U. (1966). Geburt eines Zebras. Z. Tierpsychol. 23:72–76.

    PubMed  CAS  Google Scholar 

  • Klinghammer, E. (1967). Factors influencing choice of mate in altricial birds. In Stevenson, H. E., Hess, E. H., and Rheingold, H. J. (eds.), Early Behavior. Comparative and Developmental Approaches, Wiley, New York, pp. 5–42.

    Google Scholar 

  • Kohsaka, S., Takamatsu, K., Aoki, E., and Tsukada, Y. (1979). Metabolic mapping of chick brain after imprinting using 14C-deoxyglucose. Brain Res. 172:539–544.

    PubMed  CAS  Google Scholar 

  • Konishi, M. (1965). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. Tierpsychol. 22:770–783.

    PubMed  CAS  Google Scholar 

  • Konishi, M., and Nottebohm, F. (1969). Experimental studies in the ontogeny of avian vocalization. In Hinde, R. A. (ed.), Bird Vocalization, Cambridge University Press, Cambridge, pp. 29–48.

    Google Scholar 

  • Kovach, J. K. (1964). Effects of autonomic drugs on imprinting. J. Comp. Physiol. 57:183 – 187.

    CAS  Google Scholar 

  • Kovach, J. K. (1979). Genetic influence and genotype-environment interaction in perceptual imprinting. Behaviour 38:31–60.

    Google Scholar 

  • Kovach, J. K., and Hess, E. H. (1963). Imprinting: Effects of painful stimulation upon the following response. J. Comp. Physiol. 56:461–464.

    CAS  Google Scholar 

  • Kratz, K. E., and Lehmkuhle, S. (1983). Spatial contrast sensitivity of monocularly deprived cats after removal of the nondeprived eye. Behav. Brian Res. 7:261–266.

    CAS  Google Scholar 

  • Kratz, K. E., Spear, P. D., and Smith, D. D. (1976). Postcritical period reversal of effects of monocular deprivation on striate cortex cells in the cat. J. Neurophysiol. 39:501–511.

    PubMed  CAS  Google Scholar 

  • Kroodsma, D., and Pickert, R. (1980). Environmentally dependent sensitive periods for avian vocal learning. Nature 288:1477–478.

    Google Scholar 

  • Leidermann, P. H. (1981). Human motherinfant social bonding: Is there a sensitive period?. In Immelmann, K., Barlow, G. W., Petrinovich, L., and Main,M. (eds.), Behavioural Development: The Bielefeld Interdisciplinary Project, Cambridge University Press, Cambridge, pp. 454–470.

    Google Scholar 

  • Le Vay, S., and Stryker, M. P. (1979). The development of ocular dominance columns in the cat. In Ferrendelli, J. A. (ed.), Society for Neuroscience Symposia IV. Aspects of Developmental Neurobiology, Society for Neuroscience, Bethesda, Maryland, pp. 83 – 98.

    Google Scholar 

  • Le Vay, S., Stryker, M. P., and Shatz, C. J. (1978). Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study. J. Comp. Neurol. 179:223–244.

    Google Scholar 

  • Leventhal, A. G., and Hirsch, H. V. B. (1983). Effects of visual deprivation upon the geniculocortical W-cell pathway in the cat: Area 19 and its efferent input. J. Comp. Neurol. 213:59–71.

    Google Scholar 

  • Levitt, F. B., VanSluyters, R. C. (1982). The sensitive period for strabismus inthe kitten. Dev. Brain Res. 3:323–327.

    Google Scholar 

  • Libet, B., Kobayashi, H., and Tanaka, T. (1975). Synaptic coupling into the production and storage of memory trace. Nature 258:155–157.

    PubMed  CAS  Google Scholar 

  • Lippe, W. R. (1976). Innate and experimental factors in the development of the visual system: Historical basis of current controversy. In Gottlieb, G. (ed.), Neural and Behavioral Specificity, Academic Press, New York, pp. 5–24.

    Google Scholar 

  • Livingstone, M. S., and Hubel, D. H. (1981). Effects of sleep and arousal on the processing of visual informatin in the cat. Nature 291:554.

    PubMed  CAS  Google Scholar 

  • London, J. A., and Greenough, W. T. (1982). Evoked potential evidence for a stripe-rearing effect on rat visual cortex. Physiol. Psychol. 10:51–54.

    Google Scholar 

  • Lorenz, K. (1935). Der Kumpan in der Umwelt des Vogels. J. Ornithol. 83:137–213, 289–413.

    Google Scholar 

  • Lund, R. D. (1978). Development and Plasticity of the Brain, Oxford University Press, New York.

    Google Scholar 

  • Lynch, G., Gall, C., Rose, G., and Cotman, C. (1976). Changes in the distribution of the dentate gyrus associational system following unilateral or bilateral entorhinal lesions in the adult cat. Brain Res. 10:57–71.

    Google Scholar 

  • Marler, P., and Peters, S. (1977). Selective vocal learning in a sparrow. Science 198:519 – 521.

    PubMed  CAS  Google Scholar 

  • Marler, P., and Peters, S. (1981). Sparrows learn adult song and more from memory. Science 213:780–782.

    PubMed  CAS  Google Scholar 

  • Marler, P., and Peters, S. (1982). Developmental overproduction and selective attrition: New processes in the epigenesis of birdsong. Dev. Psychobiol. 15:369–378.

    PubMed  CAS  Google Scholar 

  • Martin, J. T. (1975). Hormonal influences in the evolution and ontogeny of imprinting behaviour in the duck. In Gispen, W. H., von Wimersma-Greidamis, T. B., Bohus, B. and de Wied, D. (eds.), Progress in Brain Research 42: Hormones, Homoeostasis and the Brain, Elsevier, Amsterdam, pp. 357–366.

    Google Scholar 

  • Martin, J. T., and Delanerolle, N. (1979). Avian archistriatal control of fear-motivated behavior and adrenocortical function. Behav. Processes 4:283–293.

    Google Scholar 

  • Martin, J. T., and Schutz, F. (1974). Arousal and temporal factors in imprinting in mallards. Dev. Psychobiol. 7:69–78.

    Google Scholar 

  • McCabe, B. J., Cipolla-Neto, J., Horn, G., and Bateson, P. P. G. (1979). Brain lesions and imprinting. Neurosci. Lett. 3:381.

    Google Scholar 

  • Metcalfe, J. (1976). The influence of incubatory photic stimuli on chick’s visual intensity preference for approach behavior. Dev. Psychobiol. 9:49–55.

    PubMed  CAS  Google Scholar 

  • Moltz, H., and Stettner, L. J. (1961). The influence of patterned light deprivation on the critical period for imprinting. J. Comp. Physiol. Psychol. 54:279–283.

    PubMed  CAS  Google Scholar 

  • Moore, R. J., Björklund, H., and Stenevi, U. (1971). Changes in the adrenergic innervation of the rat septal area in response to denervation. Brain Res. 33:13–35.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B. (1979). An organizing principle for cerebral function: The unit module and the distributed systems. In Schmitt, F. O., and Worden, F. G. (eds.), The Neurosciences 4th Study Program, MIT Press, Cambridge, Massachusetts, pp. 21–42.

    Google Scholar 

  • Nottebohm, F. (1980). Brain pathways for vocal learning in birds: A review of the first ten years. Prog. Psychobiol. Physiol. Psychol. 9:85–124.

    Google Scholar 

  • Nottebohm, F., and Goldman, S. A. (1983). Connectivity and kinetics of neurons born in adulthood. Soc. Neurosci. Conf. Ahstr. 40:2.

    Google Scholar 

  • Nygren, L. G., Olson, L., and Sieger, S. (1971). Regeneration of monoamine-containing neurons in the developing and adult spinal chord following intraspinal 6-hydroxydo-pamine injections or transsections. Histochemie 28:1–16.

    PubMed  CAS  Google Scholar 

  • Oppenheim, R. W. (1982). Präformation und Epigenese in der Entwicklung des Nervensystems und des Verhaltens: Probleme, Begriffe und ihre Geschichte. In Immelmann, K., Barlow, G., Petrinovich, L., and Main, M. (eds.). Verhaltensentwicklung bei Mensch und Tier. Das Bielefeld-Projekt, Paul Parey, Berlin, pp. 157–221.

    Google Scholar 

  • Oyama, S. (1979). The concept of the sensitive period in developmental studies. Merill Palmer Q. 25:83–103.

    Google Scholar 

  • Parnavelas, J. G., Globus, A., and Kaups, P. (1973). Continuous illumination from birth affects spine density of neurons in the visual cortex of the rat. Exp. Neurol. 40:742–747.

    PubMed  CAS  Google Scholar 

  • Pettigrew, J. D. (1974). The effect of visual experience on the development of stimulus specificity by kitten cortical neurons. J. Physiol. (Lond.) 237:49–74.

    CAS  Google Scholar 

  • Pettigrew, J. D. (1978). The paradox of critical period for striate cortex. In Cotman, C. W. (ed.), Neuronal Plasticity, Raven Press, New York, pp. 311–330.

    Google Scholar 

  • Pettigrew, J. D., and Garey, L. J. (1974). Selective modification of single neuron properties in the visual cortex of kittens. Brain Res. 66:160–164.

    Google Scholar 

  • Pettigrew, J. D., and Konishi, M. (1976). Effect of monocular deprivation on binocular neurons in the owl’s visual wulst. Nature 264:753–754.

    PubMed  CAS  Google Scholar 

  • Pitz, G. G., and Ross, R. B. (1961). Imprinting as a function of arousal. J. Comp. Physiol. 54:602–604.

    CAS  Google Scholar 

  • Prestige, M. C. (1970). Differentiation, degeneration and the role of the periphery: Quantitative consideration. In Schmitt, F. O. (ed.), The Neurosciences 2nd Study Program, MIT Press, Cambridge, Massachusetts, pp. 73–82.

    Google Scholar 

  • Pröve, E. (1983a). Hormonal correlates of behavioural development in male zebra finches. In Balthazart, J., Prove, E., and Gilles, R. (eds.), Hormones and Behaviour in Higher Vertebrates, Springer, Berlin, pp. 368–374.

    Google Scholar 

  • Pröve, E. (1983b). Der Einfluss von Steroiden auf die sexuelle Prägung männlicher Zebrafinken (Taeniopygia guttata castanotis GOULD). Verh. Dtsch. Zool. Ges. 1983:256.

    Google Scholar 

  • Racic, P. (1977). Prenatal development of visual system in the rhesus monkey. Phil. Trans. R. Soc. Lond. B 278:245–260.

    Google Scholar 

  • Racic, P. (1981). Development of visual centers in the primate brain depends on binocular competition before birth. Science 214:928–930.

    Google Scholar 

  • Ramachandran, V. S., and Ary, M. (1982). Evidence for a “consolidation” effect during changes in ocular dominance of cortical neurons in kittens. Behav. Neural Biol. 35:211–216.

    PubMed  CAS  Google Scholar 

  • Rausch, G., and Scheich, H. (1982). Dendritic spine loss and enlargement during maturation of the speech control system in the mynah bird (Gracula religiosa). Neurosci. Lett. 29:129–133.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P. (1982). Instructive changes in the kitten’s visual cortex and their limitations. Exp. Brain Res. 48:301–305.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., and Singer, W. (1979). Changes in the circuitry of the kitten’s visual cortex are gated by postsynaptic activity. Nature 280:58–60.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., and Singer, W. (1981), The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. J. Physiol. (Lond.) 310:215–239.

    CAS  Google Scholar 

  • Rauschecker, J., and Singer, W. (1982). Binocular deprivation can erase the effects of preceding monocular or binocular vision in kitten cortex. Dev. Brain Res. 4:495–498.

    Google Scholar 

  • Rose, S. P. R. (1981). From causations to translations: What biochemists can contribute to the study of behaviour. In Bateson, P. P. G., and Klopfer, P. H. (eds.), Perspectives in Ethology IV. Advantages of Diversity, Plenum Press, New York, pp. 157–176.

    Google Scholar 

  • Rosenzweig, M. R., and Bennet, E. L. (1976). Neural Mechanisms of Learning and Memory, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Rosenzweig, M. R., Bennett, E. L., and Diamond, M. C. (1972). Brain changes in response to experience. Sci. Am. 226:22–29.

    CAS  Google Scholar 

  • Ruiz-Marcos, A., and Valverde, F. (1969). The temporal evolution of the distribution of dendritic spines in the visual cortex of normal and dark-raised mice. Exp. Brain Res. 8:284–294.

    PubMed  CAS  Google Scholar 

  • Sackett, G. P., Porter, M., and Holmes, H. (1965). Choice behavior in rhesus monkeys: Effects of stimulation during the first month of life. Science 147:304–406.

    Google Scholar 

  • Salzen, E. A., and Meyer, C. C. (1968). Reversibility of imprinting. J. Comp. Physiol. Psychol. 66:269–275.

    PubMed  CAS  Google Scholar 

  • Schlag, J., and Schlag-Rey, M. (1983). Thalamic units firing upon refixation may be responsible for plasticity in visual cortex. Exp. Brain Res. 50:146–148.

    PubMed  CAS  Google Scholar 

  • Schutz, F. (1965). Sexuelle Prägung bei Anatiden. Z. Tierpsychol. 22:50–103.

    PubMed  CAS  Google Scholar 

  • Scott, J. P. (1978). Critical Periods, Dowden, Hutchinson and Ross, Stroudsberg, Pennsylvania.

    Google Scholar 

  • Sherk, H., and Stryker, M. P. (1976). Quantitative study of cortical orientation selectivity in visually inexperienced kittens. J. Neurophysiol. 39:63–70.

    PubMed  CAS  Google Scholar 

  • Singer, W. (1976). Modification of orientation and direction selectivity in visually inexperienced kittens. Brain Res. 118:460–468.

    PubMed  CAS  Google Scholar 

  • Singer, W. (1979a). Central core control of visual cortex functions. In Schmitt, F. O., and Worden, F. G. (eds.). The Neurosciences 4th Study Program, MIT Press, Cambridge, Massachusetts, pp. 1093–1110.

    Google Scholar 

  • Singer, W. (1979b). The role of matching operations between pre- and postsynaptic activity in experience-dependent modifications of visual cortex functions. In Meisami, E., and Brazier, M. A. B. (eds.), Neural Growth and Differentiation, Raven Press, New York, pp. 295–309.

    Google Scholar 

  • Singer, W. (1982). Recovery mechanisms in the mammaliam brain. In Nicholls, J. G., (ed.). Repair and Regeneration of the Nervous System. Dahlem Konferenzen 1982, SPringer, Berlin, pp. 203–226.

    Google Scholar 

  • Singer, W., Tretter, F., and Yinon, U. (1979). Inverted vision causes selective loss of striate cortex neurons with binocular, vertically oriented receptive fields. Brain Res. 170:177 – 181.

    PubMed  CAS  Google Scholar 

  • Singer, W., Tretter, F., and Yinon, U. (1982a). Central gating of developmental plasticity in kitten visual cortex. J. Physiol. 324:221–237.

    PubMed  CAS  Google Scholar 

  • Singer, W., Tretter, F., and Yinon, U. (1982b). Evidence for long-term functional plasticity in the visual cortex of adult cats. J. Physiol. 324:239–248.

    PubMed  CAS  Google Scholar 

  • Sireteanu, R. (1982). Binocular vision in strabismic humans with alternating fixation. Vision Res. 22:889–896.

    PubMed  CAS  Google Scholar 

  • Sjölander, S. (1978). A methodological critique of imprinting. In Nöhring, R. (ed.), Acta XVII. Congressus Internationalis Ornitologici, Verlag D. O. G., Berlin, pp. 847–850.

    Google Scholar 

  • Spemann, H. (1938). Embryonic Development and Induction, Yale University Press, New Haven.

    Google Scholar 

  • Spinelli, D. N., Hirsch, H. V. B., Phelps, R. W., and Metzler, J. (1972). Visual experience as a determinant of the response characteristics of cortical receptive fields in cats. Exp. Brain Res. 15:289–304.

    PubMed  CAS  Google Scholar 

  • Spinelli, D. N., Jensen, F. E., and Viana di Prisco, G. (1980). Early experience effect on dendritic branching normally reared kittens. Exp. Neurol. 68:1–11.

    PubMed  CAS  Google Scholar 

  • Stenevi, U., Björklund, A., and Moore, R. Y. (1973). Morphological plasticity of central adrenergic neurons. Brain Behav. Evol. 8:110–134.

    Google Scholar 

  • Stent, G. S. (1973). A physiological mechanism for Hebb’s postulate on learning. Proc. Natl. Acad. Sci. USA 70:997–1001.

    PubMed  CAS  Google Scholar 

  • TenCate, C. (1982). Behavioural differences between zebra finch and Bengalese finch (foster) parents raising zebra finch offspring. Behaviour 81:152–172.

    Google Scholar 

  • Teuchert, G., Wolff, J. R., and Immelmann, K. (1982). Physiologische Degeneration in der Ontogenese des ZNS von Vögeln: Eine Einflussnahme auf die sensible Phase für Prägung?. Werk. Dtsch. Zool. Ges. 1982:259.

    Google Scholar 

  • Todt, D., Hultsch, H., and Heike, D. (1979). Conditions affecting song acquisition in nightingales (Luscinia megarhynchos L.). Z. Tierpsychol. 51:23–35.

    Google Scholar 

  • Vidal, J.-M. (1980). The relations between filial and sexual imprinting in the domestic fowl: Effects of age and social experience. Anim. Behav. 28:880–891.

    Google Scholar 

  • Waddington, C. H. (1957). The Strategy of the Genes, Allen and Unwin, London.

    Google Scholar 

  • Wall, P. D. (1977). The presence of ineffective synapses and the circumstances which unmask them. Phil. Trans. R. Soc. Lond. B 278:361–372.

    CAS  Google Scholar 

  • Wark, R. C., and Peck, C. K. (1982). Behavioral consequences of early visual exposure to contours of a single orientation. Dev. Brain Res. 5:218–221.

    Google Scholar 

  • Weiss, J., Koehler, W., and Landsberg, J. W. (1977). Increase of the corticosterone level in ducklings during the sensitive period of the following response. Dev. Psychobiol. 10:59–64.

    PubMed  CAS  Google Scholar 

  • Wiesel, T. N., and Hubel, D. H. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28:1029–1040.

    PubMed  CAS  Google Scholar 

  • Wolff, J. R. (1981). Some morphogenetic aspects of the development of the central nervous system. In Immelmann, K., Barlow, G. W., Petrinovich, L., and Main, M. (eds.), Behavioural Development: The Bielefeld Interdisciplinary Project, Cambridge University Press, Cambridge, pp. 164–190.

    Google Scholar 

  • Zihl, J. (1981). Recovery of visual functions in patients with cerebral blindness. Effects of specific practice with saccadic localization. Exp. Brain Res. 44:159–169.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Bischof, HJ. (1985). Environmental Influences on Early Development: A Comparison of Imprinting and Cortical Plasticity. In: Bateson, P.P.G., Klopfer, P.H. (eds) Perspectives in Ethology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0232-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0232-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0234-7

  • Online ISBN: 978-1-4757-0232-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics