Advertisement

Brain and Behavior: Hierarchy of Feedback Systems and Control of Input

  • A. R. Cools

Abstract

The cornerstone of this chapter is W. Powers’ definition of behavior: behavior is the control of the sensory input of the organism. By definition, behavior is conceived as a process by which the organization inside the organism controls the input of the organism; the brain is thereby conceived as an integrated whole of negative feedback systems controlling this input. In this chapter I have attempted to elaborate the usefulness of this concept for getting insight into basic functions of distinct neuronal substrates in programming behavior. For that purpose the relational and dynamic features of different levels of cerebral organization of behavior (hierarchies) are examined. I discuss how input signals derived from interoceptive, proprioceptive, and exteroceptive stimuli are transformed into abstract, invariant functions, the degree of abstraction of these stimuli increasing at each higher order level within the hierarchy. I also discuss how behavioral commands result from behavioral program signals, the degree of freedom in programming behavior decreasing at each lower order level in the hierarchy. The usefulness of Powers’ concept is illustrated by investigating how information that is sent to the neostriatum is transformed on its way downstream in the hierarchy.

Keywords

Input Signal Conditioned Stimulus Output Signal Reference Signal Behavioral State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bizzi, E., and Polit, A. (1979). Characteristics of the motor programs underlying visually evoked movements. In Talbott, R. E. and Humphrey, D. R. (eds.), Posture and Movements, Raven Press, New York, pp. 169–176.Google Scholar
  2. Carver, C. S., and Scheier, M. F. (1982). Control theory: A useful conceptual framework for personality-social, clinical, and health psychology. Psychol. Bull. 92:111–135.PubMedCrossRefGoogle Scholar
  3. Chesselet, M. F., Chéramy, A., Reisine, T. D., Lubetzki, C., Desban, M., and Glowinski, J. (1983). Local and distal effects induced by unilateral striatal application of opiates in the absence or in the presence of naloxone on the release of dopamine in both caudate nuclei and substantiae nigrae of the cat. Brain Res. 258:229–242.PubMedCrossRefGoogle Scholar
  4. Cools, A. R. (1973). The Caudate Nucleus and Neurochemical Control of Behaviour, Brak-kenstein Press, Nijmegan.Google Scholar
  5. Cools, A. R. (1980). Role of the neostriatal, dopaminergic activity in sequencing and selecting behavioural strategies: Facilitation of processes involved in selecting the best strategy in a stressful situation. Behav. Brain Res. 1:361–378.PubMedCrossRefGoogle Scholar
  6. Cools, A. R. (1981a). Aspects and prospects of the concept of neurochemical and cerebral organization of aggression: Introduction of new research strategies in “Brain and Behaviour” studies. In Brain, P. F., and Benton, D. (eds.), The Biology of Aggression, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, pp. 405–425.Google Scholar
  7. Cools, A. R. (1981b). Physiological significance of the striatal system: New light on an old concept. Adv. Physiol. Sci. 2:227–230.Google Scholar
  8. Cools, A. R. (1981c). Psychopharmacology and aggression: An appraisal of the current situation. In Brian P. F., and Benton, D. (eds.), The Biology of Aggression, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, pp. 131–145.Google Scholar
  9. Cools, A. R., and van den Bercken, J. H. L. (1977). Cerebral organization of behaviour and the neostriatal function. In Cools, A. R., Lohman, A. H. M., and van den Bercken, J. H. L. (eds.), Psychobiology of the Striatum, Elsevier/North-Holland, Amsterdam, pp. 119–140.Google Scholar
  10. Cools, A. R., van den Bercken, J. H. L., van Hoof, J., Vrijmoed-de Vries, M., and Jaspers, R. (1983a). Basal ganglia disorders in animals: A ‘shifting aptitude’ disorder. In Abstract Book of Satellite Symposium of 29th WPS Congress: The Basal Ganglia, Structure and Function, Lome, September 5–7.Google Scholar
  11. Cools, A. R., Vrijmoed-de Vries, M., Jaspers, R., van den Bercken, J., Horstink, M., and van Hoof, J. (1983b). Programming behavioural strategies and the working striatum. In Proceedings 18th International Ethological Conference (University of Queensland), Brisbane, August 28-September 6.Google Scholar
  12. Cools, A. R., Jaspers, R., Kolasiewicz, W., Sontag, K. H., and Wolfarth, S. (1983c). Substantia nigra as a station that not only transmits, but also transforms incoming signals for its behavioural expression: Striatal dopamine and GABA-mediated responses of pars reticulata neurons. Behav. Brain Res. 7:39–49.PubMedCrossRefGoogle Scholar
  13. Cools, A. R., van den Bercken, J. H. L., Horstink, M. W. I., van Spaendonck, K. P. M., and Berger, H. J. C. (1984). Cognitive and motor shifting aptitude disorders in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatr. 47:443–453.PubMedCrossRefGoogle Scholar
  14. De Ryck, M., Schallert, T., and Teitelbaum, P. (1980). Morphine versus haloperidol catalepsy in the rat: A behavioral analysis of postural support mechanisms. Brain Res. 201:143–172.PubMedCrossRefGoogle Scholar
  15. Desmedt, J. E., and Godaux, E. (1981). Spinal motoneuron recruitment in man: Rank deor-dering with direction but not with speed of voluntary movement. Science 214:933–936.CrossRefGoogle Scholar
  16. Eccles, J. C. (1982). The initiation of voluntary movements by the supplementary motor area. Arch. Psychiatr. Nervenkr. 231:423–441.PubMedCrossRefGoogle Scholar
  17. Edgerton, V. R., Grillner, S., Sjöström, A., and Zangger, P. (1976). Central generation of locomotion in vertebrates. In Herman, R. M., Grillner, S., Stein, P. S. G., and Stuart, D. G. (eds.), Advances in Behavioural Biology, Vol. 18, Plenum Press, New York, pp. 439–464.Google Scholar
  18. Eideiberg, E. (1981). Consequences of spinal cord lesions upon motor function with special reference to locomotor activity. Prog. Neurobiol. 17:185–202.CrossRefGoogle Scholar
  19. Eidelberg, E., Story, J. L., Waiden, J. G., and Meyer, B. L. (1981). Anatomical correlates of return of locomotor function after partial spinal cord lesions in cats. Exp. Brain Res. 42:81–88.PubMedCrossRefGoogle Scholar
  20. Feldman, A. G., and Latash, M. L. (1982). Inversion of vibration-induced senso-motor events caused by supraspinal influences in man. Neurosci. Lett. 31:147–151.PubMedCrossRefGoogle Scholar
  21. Fentress, J. C. (1983). Ethological models of hierarchy and patterning of species specific behavior. In Satinoff, E., and Teitelbaum, P. (eds.), Handbook of Behavioural Neurobiology, Vol. 6, Plenum Press, New York, pp. 185–234.Google Scholar
  22. Golani, I., Bronchti, G., Moualem, D., and Teitelbaum, P. (1981). “Warm-up” along dimensions of movement in the ontogeny of exploration in rats and other infant mammals. Proc. Natl. Acad. Sci. USA 78:7226–7229.PubMedCrossRefGoogle Scholar
  23. Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiol. Rev. 55:247–304.PubMedCrossRefGoogle Scholar
  24. Grillner, S. (1976). Some aspects on the descending control of the spinal circuits generating locomotor movements. In Herman, R. M., Grillner, S., Stein, P. S. G., and Stuart, D. G. (eds.), Advances in Behavioural Biology, Vol. 18, Plenum Press, New York, pp. 351–375.Google Scholar
  25. Grillner, S., and Shik, M. L. (1973). On the descending control of the lumbosacral spinal cord from the “mesencephalic locomotor region.” Acta Physiol. Scand. 87:320–333.PubMedCrossRefGoogle Scholar
  26. Grillner, S., and Zangger, P. (1979). On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34:241–261.PubMedCrossRefGoogle Scholar
  27. Heim, C., Jaspers, R., Kolasiewicz, W., Schwarz, M., Sontag, K.-H., and Cools, A. R. (1983). Substantia nigra pars reticulata and disorders in switching motor programmes. In Abstract Book of Satellite Symposium of 29th WPS Congress: The Basal Ganglia, Structure and Function, Lome, September 5–7.Google Scholar
  28. Iversen, S. D. (1977). Striatal function and stereotyped behaviour. In Cools, A. R., Lohman, A. H. M. L., and van den Bercken, J. H. L. (eds.), Psychobiology of the Striatum, Elsevier/North-Holland, Amsterdam, pp. 99–118.Google Scholar
  29. Jaspers, R., van Hoof, J., Sontag, K.-H., and Cools, A. R. (1983a). Dopaminergic agents alter the caudate nucleus function in switching motor programmes. Neurosci. Lett. Suppl. 14:S182.Google Scholar
  30. Jaspers, R., van Hoof, J., Sontag, K.-H., and Cools, A. R. (1983b). Caudate nucleus and disorders in switching motor programmes. Pharm. Weekbl. Sci. Ed. 5:268.Google Scholar
  31. Jaspers, R., Heim, C., Schwarz, M., Sontag, K.-H., and Cools, A. R. (1983c). Animal models for shifting aptitude disorders in patients with Parkinson’s disease. In Abstracts Symposium on Restorative Neurology in the Central and Peripheral Nervous System (Fidia Research Biomedical Information), Venice, May 24–26.Google Scholar
  32. Jaspers, R. M. A., Kolasiewicz, W., Heim, C., Sontag, K.-H., and Cools, A. R. (1983d). Role of the substantia nigra pars reticulata in switching motor programmes. In Dutch Foundation Federation of Medical Scientific Societies (ed.), Proceedings of the Dutch Federation Meeting, Leiden, April 7–8.Google Scholar
  33. Jaspers, R., Schwarz, M., and Cools, A. R. (1983e). Colliculus superior and disorders in switching motor programmes. In Abstract Book of Satellite Symposium of 29th WPS Congress: The Basal Ganglia, Structure and Function, Lome, September 5–7.Google Scholar
  34. Kortlandt, A. (1955). Aspects and prospects of the concept of instinct (vicissitudes of the hierarchy theory). Arch. Neerl. Zool. 11:155–284.CrossRefGoogle Scholar
  35. Kuypers, H. (1978). The organization of the motor system in primates. In Chivers, D. J. and Herbert, J. (eds.), Recent Advances in Primatology, Vol. 1, Academic Press, New York, pp. 623–634.Google Scholar
  36. Lyon, M., and Robbins, T. W. (1975). The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects. Curr. Dev. Psychopharmacol. 2:80–163.Google Scholar
  37. Miller, S., and Scott, P. D. (1977). The spinal locomotor generator. Exp. Brain Res. 30:387–403.PubMedCrossRefGoogle Scholar
  38. Mori, S., Shik, M. L., and Yagodnitsyn, A. S. (1977). Role of pontine tegmentum for locomotor control in mesencephalic cat. J. Neurophysiol. 40:284–295.PubMedGoogle Scholar
  39. Mori, S., Nishimura, H., Kurakami, C., Yamamura, T., and Aoki, M. (1978). Controlled locomotion in the mesencephalic cat: Distribution of facilitatory and inhibitory regions within pontine tegmentum. J. Neurophysiol. 41:1580–1591.PubMedGoogle Scholar
  40. Myers, R. D. (1974). Handbook of Drug and Chemical Stimulation of the Brain. Behavioral, Pharmacological and Physiological Aspects, Van Nostrand Reinhold, New York.Google Scholar
  41. Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex 12:313–324.PubMedGoogle Scholar
  42. Orlovskii, G. N. (1969). Spontaneous and induced locomotion of the thalamic cat. Biofizika 14:1095–1102.Google Scholar
  43. Péchadre, J. C., Larochelle, L., and Poirier, L. J. (1976). Parkinsonian akinesia, rigidity and tremor in the monkey. J. Neurol. Sci. 28:147–157.PubMedCrossRefGoogle Scholar
  44. Plooy, F. X. (1980). The Behavioral Development of Free-living Chimpanzee Babies and Infants. Ph.D. Thesis, De Witte Studentenpers, Groningen.Google Scholar
  45. Polit, A., and Bizzi, E. (1979). Characteristics of motor programs underlying arm movements in monkeys. J. Neurophysiol. 42:183–194.PubMedGoogle Scholar
  46. Powers, W. T. (1973a). Feedback: Beyond behaviorism. Science 179:351–356.PubMedCrossRefGoogle Scholar
  47. Powers, W. (1973b). Behavior: The Control of Perception. Aldine, Chicago.Google Scholar
  48. Ranck, J. B. (1975). Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Res. 98:417–440.PubMedCrossRefGoogle Scholar
  49. Ridley, R. M., Haystead, T. A. J., and Baker, H. F. (1981). An involvement of dopamine in higher order choice mechanisms in monkey. Psychopharmacology 72:173–177.PubMedCrossRefGoogle Scholar
  50. Regan, D., and Beverley, K. I. (1982). How do we avoid confounding the direction we are looking and the direction we are moving? Science 215:194–197.PubMedCrossRefGoogle Scholar
  51. Roland, P. E., Larsen, B., Lassen, N. A., and Skinhøj, E. (1980). Supplementary motor area and other cortical areas in organization in voluntary movements in man. J. Neurophysiol. 42:118–136.Google Scholar
  52. Roland, P. E., Meyer, E., Shibasaki, T., Yamamoto, Y. L., and Thompson, C. J. (1982). Regional cerebral blood flow changes in cortex and basal ganglia during voluntary movements in normal human volunteers. J. Neurophysiol. 48:467–480.PubMedGoogle Scholar
  53. Rothwell, J. C., Traub, M. M., and Marsden, C.D. (1982). Automatic and “voluntary” responses compensating for disturbances of human thumb movements. Brain Res. 248:33–41.PubMedCrossRefGoogle Scholar
  54. Schallert, T., and Teitelbaum, P. (1981). Haloperidol, catalepsy, and equilibrating functions in the rat: Antagonistic interaction of clinging and labyrinthine righting reactions. Physiol. Behav. 27:1077–1083.PubMedCrossRefGoogle Scholar
  55. Scheel-Krüger, J. (1983). The GABA receptor and animal behaviour. In Enna, S. (ed.), GABA Receptors, Humana Press, Clifton, New Jersey, pp. 215–265.Google Scholar
  56. Schoenfeld, T. A., and Hamilton, L. N. (1977). Secondary brain changes following lesions: A new paradigm for lesion experimentation. Physiol. Behav. 18:951–967.PubMedCrossRefGoogle Scholar
  57. Shimamura, M., Kogure, I., and Wada, S. I. (1982). Reticular neuron activities associated with locomotion in thalamic cats. Brain Res. 231:51–62.PubMedCrossRefGoogle Scholar
  58. Sirkin, D. W., Schallert, T., and Teitelbaum, P. (1980). Involvement of the pontine reticular formation in head movements and labyrinthine righting in the rat. Exp. Neurol. 69:435–457.PubMedCrossRefGoogle Scholar
  59. Smith, J. L., Smith, L. A., Zernicke, R. F., and Hoy, M. (1982). Locomotion in exercised and nonexercised cats cordotomized at two or twelve weeks of age. Exp. Neurol. 76:393–413.PubMedCrossRefGoogle Scholar
  60. Sontag, K.-H., Heim, C., Schwarz, M., Jaspers, R., and Cools, A. R. (1983). Consequences of disturbed GABA-ergic transmission in substantia nigra pars reticulata in freely moving cats on their motor behaviour, and in anaesthetized cats on their spinal motor elements. In Abstract Book of Satellite Symposium of 29th WPS Congress: The Basal Ganglia, Structure and Function, Lome, September 5–7.Google Scholar
  61. Teitelbaum, P., Schallert, T., and Whishaw, I. Q. (1983). Sources of spontaneity in motivated behaviour. In Satinoff, E., and Teitelbaum, P. (eds.), Handbook of Behavioural Neurobiology, Vol. 6, Plenum Press, New York, pp. 23–65.Google Scholar
  62. Terzuolo, C. A., and Viviani, P. (1980). Determinants and characteristics of motor patterns used for typing. Neuroscience 5:1085–1103.PubMedCrossRefGoogle Scholar
  63. Van Dongen, P. A. M. (1980). The Noradrenergic Locus Coeruleus. Behavioral Effects of Intra-cerebral Injections and a Survey of Its Structure, Function and Pathology. Ph.D. Thesis. Krips Repro BV, Meppel.Google Scholar
  64. Van den Bercken, J. H. L., and Cools, A. R. (1979). Role of the neostriatum in the initiation, continuation and termination of behaviour. Appl. Neurophysiol. 42:106–108.PubMedGoogle Scholar
  65. Van den Bercken, J. H. L., and Cools, A. R. (1982). Evidence for a role of the caudate nucleus in the sequential organization of behaviour. Behav. Brain Res. 4:319–337.PubMedCrossRefGoogle Scholar
  66. Viviani, P., and Terzuolo, C. (1982). Trajectory determines movement dynamics. Neuroscience 7:431–437.PubMedCrossRefGoogle Scholar
  67. Von Uexbüll, J. (1934). Streifzüge durch die Umwelten von Tieren und Menschen, Springer, Berlin.Google Scholar
  68. Vrijmoed-de Vries, M., and Cools, A. R. (1983). Disturbances in both social communication and motor behaviour can be elicited in the same region within the caudate nucleus of Java monkeys. Neurosci. Lett. Suppl. 14:S395.Google Scholar
  69. Wolfarth, S., Kolasiewicz, W., and Sontag, K.-H. (1981). The effects of muscimol and Picrotoxin injections into the cat substantia nigra. Naunyn-Schmiedeberg’s Arch. Phar-makol. 317:54–60.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • A. R. Cools
    • 1
  1. 1.Department of PharmacologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations