Effect on Drosophila melanogaster and S-37 Tumor Cells; Postulates for Magnetic Field Interactions

  • Indumati L. Mulay
  • L. N. Mulay


Since ancient times man seems to have been fascinated by the mysterious powers of a magnetic field over life, but a true scientific interest in the study of its effects on living matter was not aroused until the nineteenth century. Since then, several reports on the effects of magnetic fields on life from bacteria to man have appeared from time to time. In the last decade this interest has intensified and several studies have been published in many journals.


Magnetic Field Ascites Tumor Culture Slide Percent Percent Percent Percent Percent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chevais, S., and P. Manigault, Compt. Rend. 214(23):919, 1942.Google Scholar
  2. 2.
    Hall-Test Division Instruments Systems Corp., New York.Google Scholar
  3. 3.
    Sturtevant, A.M., C.B. Bridges, T.H. Morgan, L.V. Morgan, and J.C. Li, “Contributions to the Genetics of Drosophila melanogaster,” Carnegie Inst. Wash. Publ., 1929.Google Scholar
  4. 4.
    Srb, A.M., and R.D. Owen, General Genetics, Freeman and Co., San Francisco, 1955. 33.Google Scholar
  5. 5.
    Lengyel, J., Arch. Exptl. Zellforschung (Jena) 14(2):255, 1933;Google Scholar
  6. 5a.
    Lengyel, J. cf. Radiology 35:307, 1940.Google Scholar
  7. 6.
    Lengyel, J., Arch. Exptl. Zellforschung (Jena) 15:246, 1934;Google Scholar
  8. 6a.
    Lengyel, J. cf. Radiology 35:307, 1940.Google Scholar
  9. 7.
    Huzella, T., Arch. Exptl. Zellforschung (Jena) 15:250, 1934;Google Scholar
  10. 7a.
    Huzella, T. cf. Radiology 35:307, 1940.Google Scholar
  11. 8.
    DeLorenzi, E., Boll. Soc. Ital. Biol. Sper. (Milan) 10(8):702, 1935;Google Scholar
  12. 8a.
    DeLorenzi, E. cf. Radiology 35:307, 1940.Google Scholar
  13. 9.
    DeLorenzi, E., Scritti Ital. Radiobiol. Med. (Firenze) 6(2): 187, 1939;Google Scholar
  14. 9a.
    DeLorenzi, E. cf. Radiology 35:307, 1940.Google Scholar
  15. 10.
    Payne-Scott, R., and H. Love, Nature (London) 137(3458):277, 1936.CrossRefGoogle Scholar
  16. 11.
    Perakis, N., Acta Anat. (Basel) 4(l/2):225, 1947.CrossRefGoogle Scholar
  17. 12.
    Butler, B., Abstract No. C-3, Biomagnetic Symposium Program, University of Illinois, College of Pharmacy, November 24–25, 1961.Google Scholar
  18. 13.
    Mulay, I. L., and L.N. Mulay, Nature (London) 190(4780): 1019, 1961; International Conference on High Magnetic Field Program, Abstract No. M4, Cambridge, Massachusetts, 1961.CrossRefGoogle Scholar
  19. 14.
    Paul, J., Cell and Tissue Culture, The Williams and Wilkins Co., Baltimore, 1960.Google Scholar
  20. 15.
    Bhatnagar, S.S., and K.N. Mathur, Physical Principles and Applications of Magnetochemistry, Macmillan, London, 1935.Google Scholar
  21. 16.
    Müller, E., Naturwiss. 25:545, 1937.CrossRefGoogle Scholar
  22. 17.
    Delhez, R., Rev. Quest. Sci. 18:176, 1957;Google Scholar
  23. 17a.
    Delhez, R. Bull. Soc. Roy. Sci. Liege 27:161, 1957;Google Scholar
  24. 17b.
    Delhez, R. C. A. 52:817d, 1958;Google Scholar
  25. 17c.
    Delhez, R. C. A. 51:10203b, 1957.Google Scholar
  26. 18.
    Parker, M. A., and H.P. Armes, Trans. Roy. Soc. Can. Vol. 18, Sec. III, p. 203, 1924;Google Scholar
  27. 18a.
    Parker, M. A., and H.P. Armes C. A. 19:927, 1925.Google Scholar
  28. 19.
    Cegielsky, R., Ber. Physik. Ger. 15:566, 1908.Google Scholar
  29. 20.
    Heimrod, G. W., Z. Elektrochem. 19:812, 1914;Google Scholar
  30. 20a.
    Heimrod, G. W. C.A. 8:863, 1914.Google Scholar
  31. 21.
    Rosenthal, I., Sitzber. Akad. Wiss. Berlin 1:20, 1908.Google Scholar
  32. 22.
    Berndt, G., Physik. Z. 9:512, 1908;Google Scholar
  33. 22a.
    Berndt, G. C. A. 2:3191, 1908.Google Scholar
  34. 23.
    Nichols, A., Am. J. Sci. 31:272, 1886.Google Scholar
  35. 24.
    Leffler, J. E., J. Chem. Phys. 17:741, 1949.CrossRefGoogle Scholar
  36. 25.
    Tyutyulov, N., Compt. Rend. Acad. Bulgare Sci. 12:129, 1959;Google Scholar
  37. 25a.
    Tyutyulov, N. C.A. 54:23653G, 1960.Google Scholar
  38. 26.
    Kornfeld, G., and E. Klingler, Z. Physik. Chem. B4:37, 1929;Google Scholar
  39. 26a.
    Kornfeld, G., and E. Klingler C. A. 23:5089, 1929.Google Scholar
  40. 27.
    Henglein, F. A., Elektrochem. 32:213, 1926;Google Scholar
  41. 27a.
    Henglein, F. A. C. A. 20:3621, 1926.Google Scholar
  42. 28.
    Reeves, W.B., U.S. Pat. 2,664,394, December 29, 1953;Google Scholar
  43. 28a.
    Reeves, W.B. C. A. 48:4340E, 1954.Google Scholar
  44. 29.
    Schmidt, H., G. Muhr, and H. Marek, Z. Elektrochem. 51:37, 1945.Google Scholar
  45. 30.
    Breitenbach, J.W., and F. Richter, Monatsh 80:315, 1949;CrossRefGoogle Scholar
  46. 30a.
    Breitenbach, J.W., and F. Richter C.A. 44:2300, 1950.Google Scholar
  47. 31.
    Leffler, J. E., and M.J. Sienko, J. Chem. Phys. 17:215, 1949.CrossRefGoogle Scholar
  48. 32.
    Collins, S., and W. A. Bryce, J. Chem. Phys. 18:1297, 1950.CrossRefGoogle Scholar
  49. 33.
    Wojtczak, J., Chem. Stosowana 2:387, 1958;Google Scholar
  50. 33a.
    Wojtczak, J. C. A. 53:15727, 1959.Google Scholar
  51. 34.
    Krause, A., and Binkōwna, Roczniki Chem. 33:819, 1959;Google Scholar
  52. 34a.
    Krause, A., and Binkōwna C.A. 54:2912, 1960.Google Scholar
  53. 35.
    Ogawa, E., Tech. Rept. Kyushu. Imp. Univ. 14:243, 1939;Google Scholar
  54. 35a.
    Ogawa, E. J. Chem. Soc. Japan 60:183, 1939.Google Scholar
  55. 36.
    Krumholtz, O. F., U.S. Patent 2,352,791, July 4, 1944;Google Scholar
  56. 36a.
    Krumholtz, O. F. C. A. 38:5650, 1944.Google Scholar
  57. 37.
    Siemens and Halske A. G., German Pat. 901,048, January 7, 1954;Google Scholar
  58. 37a.
    Siemens and Halske A. G. C.A. 50:6107, 1956.Google Scholar
  59. 38.
    Schwab, G.M., and A. Kaiser, Z. Physik. Chem. (Frankfurt) 22:220, 1959.CrossRefGoogle Scholar
  60. 39.
    Vieth, G., Z. Naturforsch, 10A:330, 1955.Google Scholar
  61. 40.
    Shchukarev, A.N., J. Russ. Phys. Chem. Soc, 47:1644, 1915;Google Scholar
  62. 40a.
    Shchukarev, A.N. J. Russ. Phys. Chem. Soc 48:1785, 1916;Google Scholar
  63. 40b.
    Shchukarev, A.N. J. Russ. Phys. Chem. Soc 521:285, 1920;Google Scholar
  64. 40c.
    Shchukarev, A.N. J. Russ. Phys. Chem. Soc 54:219, 1924;Google Scholar
  65. 40d.
    Shchukarev, A.N. J. Russ. Phys. Chem. Soc 57:426, 1925;Google Scholar
  66. 40e.
    Shchukarev, A.N. Z. Physik. Chem. 114:500, 1925;Google Scholar
  67. 40f.
    Shchukarev, A.N. Z. Physik. Chem. 113:441, 1923;Google Scholar
  68. 40g.
    Shchukarev, A.N. J. Chem. Soc. 110(II):172, 1916.Google Scholar
  69. 41.
    Sisoev, A.N., J. Gen. Chem. U.S.S.R. 8:1247, 1938;Google Scholar
  70. 41a.
    Sisoev, A.N. C. A. 33:4854, 1939.Google Scholar
  71. 42.
    Kilgus, A., Ber. 401:688, 1933;Google Scholar
  72. 42a.
    Kilgus, A. C.A. 28:2280, 1934.Google Scholar
  73. 43.
    Ehrenhaft, F., Phys. Rev. 65:287, 1944.CrossRefGoogle Scholar
  74. 44.
    Kuczynski, T., Przemysl. Chem. 13:137, 161, 1929;Google Scholar
  75. 44a.
    Kuczynski, T. C. A. 24:1788; 1930.Google Scholar
  76. 45.
    Kaneko, S., J. Soc. Chem. Ind. Japan Suppl. 34:133, 1931.Google Scholar
  77. 46.
    Mulay, L.N., and I.L. Mulay, Anal. Chem. 36:404R, 1964 (April Review Issue).CrossRefGoogle Scholar
  78. 47.
    Earnshaw, A., and J. Lewis, J. Chem. Soc. 1961:396.Google Scholar
  79. 48.
    Barnothy, M.F., Nature 193:1243, 1962.CrossRefGoogle Scholar

Copyright information

© Plenum Press 1964

Authors and Affiliations

  • Indumati L. Mulay
    • 1
  • L. N. Mulay
    • 1
  1. 1.Materials Research Laboratory and Frear Biochemistry LaboratoryPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations