Advertisement

Computing Techniques for Electrostatic Perturbations

  • W. D. Jones
  • H. J. Doucet
  • J. M. Buzzi

Abstract

In Chapter 8 we showed that the plasma response to forced oscillations is given by a Fourier transform which, in the general case, can be evaluated only by numerical methods. In this chapter we discuss three numerical techniques for calculating electrostatic perturbations in a plasma.

Keywords

Entire Function Landau Pole Dominant Pole Dipole Excitation Plasma Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, (1965); Tenth Edition (1972).Google Scholar
  2. I. Alexeff, Private Communication. (1963).Google Scholar
  3. J. M. Buzzi, Etude théorique et expérimentale des perturbations électrostatiques en plasma chaud unidimensionnel, Thèse de Doctorat d’Etat, Université Paris-Sud, Orsay (1974).Google Scholar
  4. H. Derfler, in Proceedings of the Seventh International Conference on Phenomena in Ionized Gases, Vol. 2, p. 282, (D. Perovich and D. Toshich, eds.), Gradevinska Knjiga, Beograd, Yugoslavia (1966).Google Scholar
  5. H. Derfler and T. C. Simonen, Landau waves: an experimental fact, Phys. Rev. Lett. 17, 172–175 (1966).ADSCrossRefGoogle Scholar
  6. B. D. Fried and S. D. Conte, The Plasma Dispersion Function, Academic, New York (1961).Google Scholar
  7. R. W. Gould, Excitation of Ion-Acoustic Waves, Phys. Rev. A 136, 991–997 (1964).ADSGoogle Scholar
  8. J. L. Hirshfield, J. H. Jacob, and D. E. Baldwin, Interpretation of spatially decaying ion-acoustic waves, Phys. Fluids 14, 615 (1971).ADSCrossRefGoogle Scholar
  9. G. L. Johnston, Ph.D. Thesis, University of California, Los Angeles (1967).Google Scholar
  10. G. A. Massel, Ph.D. Thesis, Raleigh University, Raleigh, NC (1967).Google Scholar
  11. D. Middleton, An Introduction to Statistical Communication Theory, McGraw-Hill, New York (1960).Google Scholar
  12. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953).MATHGoogle Scholar
  13. B. W. Roos, Analytic Functions and Distributions in Physics and Engineering, Wiley, New York (1969).Google Scholar
  14. T. C. Simonen, SUIPR Report No. 100, Stanford University, Stanford, CA (1966).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • W. D. Jones
    • 1
  • H. J. Doucet
    • 2
  • J. M. Buzzi
    • 2
  1. 1.Physics DepartmentUniversity of South FloridaTampaUSA
  2. 2.Laboratorie de Physique des Milieux IonisésEcole PolytechniquePalaiseauFrance

Personalised recommendations