Kinetic Theory of Forced Oscillations in a One-Dimensional Warm Plasma

  • W. D. Jones
  • H. J. Doucet
  • J. M. Buzzi


In the present chapter we present the classical theory of forced oscillations of an electron gas. This theory, first given by Landau (1946), corresponds to wave excitation by a transparent grid immersed in a uniform plasma and biased at the plasma potential. As in Chapter 7, we will again use the concepts of free-streaming and collective perturbations in the plasma. We will show that, as first pointed out by Hirschfield and Jacobs (1968), the collisionless damping of macroscopic quantities such as electron density, electric field, and potential, is not always due to an energy exchange between waves and particles. In order to demonstrate this point we will compute the kinetic energy deposited in the plasma for the particular case of dipolar excitation.


Meromorphic Function Density Perturbation Forced Oscillation Collective Effect Electron Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I. Alexeff, W. D. Jones and D. Montgomery, Effects of electron-temperature variation on ion-acoustic waves, Phys. Fluids. 11, 167–173 (1968).ADSCrossRefGoogle Scholar
  2. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, p. 1001, Dover, New York (1965); Tenth Edition (1972).Google Scholar
  3. K. G. Budden, Radio Waves in the Ionosphere, p. 297, Cambridge University Press (1966).Google Scholar
  4. J. M. Buzzi, Etude théorique et expérimentale des perturbations électrostatiques en plasma chaud unidimensionnel, Thèse de Doctorat d’Etat, Université Paris-Sud, Orsay (1974).Google Scholar
  5. H. J. Doucet and D. Gresillon, Grid excitation of ion waves at frequencies above the ion plasma frequency, Phys. Fluids 13, 773 (1970).ADSCrossRefGoogle Scholar
  6. M. R. Feix, Impedance of RF grids and plasma condensers, Phys. Lett. 9, 123 (1964).ADSCrossRefGoogle Scholar
  7. R. W. Gould, Excitation of ion-acoustic waves, Phys. Rev. A 136, 991–997 (1964).ADSGoogle Scholar
  8. J. L. Hirshfield and J. H. Jacob, Free-streaming and spatial Landau damping, Phys. Fluids 11, 411 (1968).ADSCrossRefGoogle Scholar
  9. U. E. Kruse and N. F. Ramsey, The integral (Math), J. Math. and Phys. 30, 40 (1951)MathSciNetMATHGoogle Scholar
  10. L. Landau, On the vibrations of the electronic plasma, J. Phys. USSR 10, 25–34 (1946).Google Scholar
  11. O. Laporte, Absorption coefficients for thermal neutrons, Phys. Rev. 52, 72 (1937).ADSCrossRefGoogle Scholar
  12. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953).MATHGoogle Scholar
  13. G. M. Sessler and G. Pearson, Propagation of ion waves in weakly ionized gases, Phys. Rev. 162, 108, (1967).ADSCrossRefGoogle Scholar
  14. C. H. Torrey, Notes on intensities of radiofrequency spectra, Phys. Rev. 59, 293 (1941).ADSMATHCrossRefGoogle Scholar
  15. C. T. Zahn, Absorption coefficients for thermal neutrons, Phys. Rev. 52, 67 (1937).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • W. D. Jones
    • 1
  • H. J. Doucet
    • 2
  • J. M. Buzzi
    • 2
  1. 1.Physics DepartmentUniversity of South FloridaTampaUSA
  2. 2.Laboratorie de Physique des Milieux IonisésEcole PolytechniquePalaiseauFrance

Personalised recommendations