Ion-Acoustic Waves in a Small Density Gradient

  • W. D. Jones
  • H. J. Doucet
  • J. M. Buzzi


A plasma that is infinite in extent and everywhere uniform and constant in density is a theoretical approximation to reality. Although for all practical purposes the interior regions of some plasmas of interest closely approximate the conditions assumed in such theoretical models, all plasmas have regions of strong density variation in the vicinity of their surfaces. As we show in this chapter, the associated density gradients can produce strong modifications of the wave motion occurring in plasmas.


Density Gradient Density Profile Uniform Plasma Nonuniform Plasma Electron Density Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. Brillouin, La mécanique ondulatoire de Schrödinger; une méthode générale de résolution par approximations successives. C. R. Acad. Sci. 183, 24–26 (1926).Google Scholar
  2. H. J. Doucet, W. D. Jones, and I. Alexeff, Linear ion-acoustic waves in a density gradient, Phys. Fluids 17, 1738–1743 (1974).ADSCrossRefGoogle Scholar
  3. H. J. Doucet and M. Feix, De l’effet des gradients et des courbures sur la reflexion d’une onde électrostatique en plasma hétérogène. J. Phys. (Paris) 36, 37 (1975).CrossRefGoogle Scholar
  4. O. Ishihara, I. Alexeff, H. J. Doucet, and W. D. Jones, Reflection and absorption of ion-acoustic waves in a density gradient, Phys. Fluids 21, 2211–2217 (1978).ADSCrossRefGoogle Scholar
  5. W. D. Jones, C. B. Mattson, and A. Lee, Reflection of ion-acoustic waves by a density gradient, Bull. Am. Phys. Soc. 21(9), 1075 (1976).Google Scholar
  6. H. A. Kramers, Z. Phys. 39, 828 (1926).ADSCrossRefGoogle Scholar
  7. C. Mattson, Observation of ion-acoustic-wave reflection from the presheath density gradient near a negatively biased plasma boundary, Master’s Thesis, University of South Florida, Tampa (1976).Google Scholar
  8. G. Wentzel, Z. Phys. 38, 518 (1926).ADSCrossRefGoogle Scholar
  9. K. C. Yeh and C. H. Liu, Theory of Ionospheric Waves, Academic, New York (1972).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • W. D. Jones
    • 1
  • H. J. Doucet
    • 2
  • J. M. Buzzi
    • 2
  1. 1.Physics DepartmentUniversity of South FloridaTampaUSA
  2. 2.Laboratorie de Physique des Milieux IonisésEcole PolytechniquePalaiseauFrance

Personalised recommendations