Finite-Size-Geometry Effects

  • W. D. Jones
  • H. J. Doucet
  • J. M. Buzzi


In all the models we have studied so far we have assumed that the plasmas are infinite and homogeneous. It is found both theoretically and experimentally, however, that the properties of plasma waves predicted by such models can be strongly modified when studied in plasmas whose dimensions are comparable with the wavelength of the waves. These modifications are called finitesize-geometry effects. In this chapter, we study the propagation of two waves we are already familiar with—electron plasma waves and ion-acoustic waves— along a column of plasma infinite in length but finite in radius, which is supported by a strong magnetic field, and which may be contained inside a waveguide, for example.


Dispersion Relation Slow Wave Plasma Column Fast Wave Cesium Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Abramowitz and I A. Stegun, Handbook of Mathematical Functions, Dover, New York (1965); Tenth Edition (1972).Google Scholar
  2. P. F. Little, Acoustic waves in a plasma, Proceedings of the Fifth International Conference on Ionization Phenomena in Gases, Munich, 1961, Vol. II, pp. 1440–1455, North-Holland, Amsterdam (1962).Google Scholar
  3. P. F. Little, Ion waves in a bounded plasma, Nature 194, 1137–1139 (1962).ADSCrossRefGoogle Scholar
  4. P. Mills, and H.J. Doucet, Excitation d’onde ionique pseudosonore dans un plasma cylindrique par un faisceau électronique, C. R. Acad. Sci. 266 (B), 149–152 (1968).Google Scholar
  5. P. Mills, Propagation d’une onde ionique dans une colonne de plasma, Thèse de Doctorat de 3ème Cycle, 101 pp., Université de Paris, Orsay (1968).Google Scholar
  6. R. W. Motley, Q Machines, Academic, New York (1975).Google Scholar
  7. A. Y. Wong, Propagation of ion-acoustic waves along cylindrical plasma columns, Phys. Fluids 9, 1261–1262 (1966).ADSCrossRefGoogle Scholar
  8. A. Y. Wong, R. W. Motley, and N. D’Angelo, Landau damping of ion-acoustic waves in highly ionized plasmas, Phys. Rev. A 133, 436–442 (1964).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • W. D. Jones
    • 1
  • H. J. Doucet
    • 2
  • J. M. Buzzi
    • 2
  1. 1.Physics DepartmentUniversity of South FloridaTampaUSA
  2. 2.Laboratorie de Physique des Milieux IonisésEcole PolytechniquePalaiseauFrance

Personalised recommendations