Advertisement

Ion-Acoustic Waves in Maxwellian Plasmas A Boundary-Value Problem

  • W. D. Jones
  • H. J. Doucet
  • J. M. Buzzi

Abstract

The history of the study of Landau damping of ion-acoustic waves is an interesting and at times colorful one. The initial concept of so-called Landau damping was introduced by L. D. Landau (1946) who demonstrated theoretically that if the speed of an acoustic wave in a plasma is slightly larger than the average thermal speed of one of the charge species (either ions or electrons) in the plasma, a wave-particle interaction should occur which would lead to a net transfer of energy from the wave to the slower moving particles, thereby causing the wave to be damped.

Keywords

Density Perturbation Landau Pole Potential Perturbation Dipolar Excitation Wave Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Alexeff, W.D.Jones and D.Montgomery, Controlled Landau damping of ion-acoustic waves., Phys. Rev. Lett. 19, 422–425 (1967).ADSCrossRefGoogle Scholar
  2. L. Brillouin, Wave Propagation and Group Velocity, Academic, New York (1960).MATHGoogle Scholar
  3. J. M. Buzzi, Etude théorique et expérimentale des perturbations électrostatiques en plasma chaud unidimensionnel, Thèse de Doctorat d’Etat, Université Paris-Sud, Orsay (1974).Google Scholar
  4. J. M. Buzzi and H. J. Doucet, On the existence or nonexistence of ion-acoustic waves in a single-ended Q machine, Bull. Am. Phys. Soc. 17, 1050 (1972).Google Scholar
  5. J. M. Buzzi and J. Henry, Ondes Electrostatiques Dans un Plasma d’Iodure de Thallium, Internal Report PMI No. 576, Laboratoire de Physique des Milieux Ionisés, Ecole Polytechnique, France (1972).Google Scholar
  6. P. Davidovits and J. L. Hirshfield, Dielectric constant of an electron-free TI+ I- plasma, Appl. Phys. Lett. 15, 290–292 (1969).ADSCrossRefGoogle Scholar
  7. H. J. Doucet, I. Alexeff, and W. D. Jones, Simultaneous measurement of ion-acoustic wave potential and plasma density perturbation to yield γ e , Phys. Fluids 11, 2451–2453 (1968).ADSCrossRefGoogle Scholar
  8. H. J. Doucet and D. Gresillon, Grid excitation of ion waves at frequencies above the ion plasma frequency, Phys. Fluids 13, 773 (1970).ADSCrossRefGoogle Scholar
  9. K. Estabrook and I. Alexeff, Nonexistence of ion-acoustic waves and Landau damping driven electrostatically in an ideal Q machine, Phys. Rev. Lett. 29, 573 (1972).ADSCrossRefGoogle Scholar
  10. M. R. Feix, Impedance of RF grids and plasma condensers, Phys. Lett. 12, 316 (1964).ADSCrossRefGoogle Scholar
  11. B. D. Fried and R. W. Gould, Longitudinal ion oscillations in a hot plasma, Phys. Fluids 4, 139–147 (1961).MathSciNetADSCrossRefGoogle Scholar
  12. R. W. Gould, Excitation of ion-acoustic waves, Phys. Rev. A 136, 991–997 (1964).ADSGoogle Scholar
  13. D. Gresillon, Etude des ondes ioniques excitées par une grille dans un plasma sans collision, J. Phys. (Paris) 32, 269 (1971).CrossRefGoogle Scholar
  14. J. L. Hirshfield and J. H. Jacob, Free-streaming and spatial Landau damping, Phys. Fluids 11, 411 (1968).ADSCrossRefGoogle Scholar
  15. G. Jahns and Van Hoven, Low-frequency grid excitation in a magnetized plasma column, Phys. Rev. 5, 2622 (1972).ADSGoogle Scholar
  16. J. H. Malmberg and C. B. Wharton, Dispersion of electron plasma waves, Phys. Rev. Lett. 17, 175 (1966).ADSCrossRefGoogle Scholar
  17. R. W. Motley, Q-Machines, Academic, New York (1975).Google Scholar
  18. G. M. Sessler and G. Pearson, Propagation of ion waves in weakly ionized gases, Phys. Rev. 162, 108 (1967).ADSCrossRefGoogle Scholar
  19. J. Virmont, Ondes ioniques en conditions aux limites avec des collisons ion-neutre et électron-neutre, Internal Report PMI No. 545, Laboratoire de Physique des Milieux Ionisés, Ecole Polytechnique, France (1972).Google Scholar
  20. A. Y. Wong, Observation of the electron contribution to ion-acoustic waves Phys. Rev. Lett. 14, 252 (1965).ADSCrossRefGoogle Scholar
  21. A. Y. Wong, R. W. Motley, and N. D’Angelo, Landau damping of ion-acoustic waves in highly ionized plasmas, Phys. Rev. A 133, 436–442 (1964).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • W. D. Jones
    • 1
  • H. J. Doucet
    • 2
  • J. M. Buzzi
    • 2
  1. 1.Physics DepartmentUniversity of South FloridaTampaUSA
  2. 2.Laboratorie de Physique des Milieux IonisésEcole PolytechniquePalaiseauFrance

Personalised recommendations