Advertisement

Thermophysical Properties Data Research on Compressed and Liquefied Gases at the NBS Cryogenics Division

  • D. E. Diller
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 21)

Abstract

The Cryogenics Division of the National Bureau of Standards, with support from various external sources, is engaged in a program of thermophysical properties data research on compressed and liquefied gases and their mixtures in support of advanced cryogenic technology. The scientific goal is to understand the relationships between molecular structure, dense fluid structure, and the behavior of simple molecular fluids, which are the basis for developing accurate predictive calculation methods. The purpose of this report is to summarize some of the contributions that have been made by this laboratory to thermophysical properties data research on the monatomic and diatomic gases (helium, hydrogen, nitrogen, oxygen, fluorine, and argon) and to discuss the ongoing research on the hydrocarbon gases (methane, ethane, ethylene, etc.) and their mixtures. Table I gives references to selected NBS publications on the equation of state, thermodynamic, electromagnetic, and transport properties of the monatomic and diatomic gases.

Keywords

Thermophysical Property Excess Gibbs Energy Thermal Conductivity Coefficient Phase Equilibrium Data Experimental Phase Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. McCarty, J. Phys. Chem. Ref. Data 2:923 (1973).CrossRefGoogle Scholar
  2. 2.
    R. D. McCarty, “Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1000 Atmospheres,” NBS Tech. Note 631 (1972).Google Scholar
  3. 3.
    H. J. M. Hanley and G. E. Childs, Cryogenics 9:106 (1969).CrossRefGoogle Scholar
  4. 4.
    W. G. Steward and G. H. Wallace, unpublished data (1971).Google Scholar
  5. 5.
    R. D. Goodwin, J. Res. NBS 73A:585 (1969).Google Scholar
  6. 6.
    H. M. Roder, L. A. Weber, and R. D. Goodwin, “Thermodynamic and Related Properties of Parahydrogen from the Triple Point to 100 K at Pressures to 340 Atm,” NBS Monograph 74 (1965).Google Scholar
  7. 7.
    H. M. Roder and R. D. McCarty, “Modified Benedict-Webb-Rubin Equation of State for Parahydrogen II,” NBSIR 75–814 (1975).Google Scholar
  8. 8.
    R. D. McCarty and L. A. Weber, “Thermophysical Properties of Hydrogen from the Freezing Liquid Line to 5000 R for Pressures to 10,000 PSIA,” NBS Tech. Note 617 (1972).Google Scholar
  9. 9.
    L. A. Weber, “Thermodynamic and Related Properties of Parahydrogen from the Triple Point to 300 K at Pressures to 1000 Bar,” NBSIR 74–374/NASA SP-3088 (1974).Google Scholar
  10. 10.
    R. D. McCarty, “ASRDI Hydrogen Technology Survey, Volume I: Thermophysical Properties,” NASA SP-3089 (1975).Google Scholar
  11. 11.
    J. W. Stewart, J. Chem. Phys. 40:3297 (1964).CrossRefGoogle Scholar
  12. 12.
    D. E. Diller, J. Chem. Phys. 49:3096 (1968).CrossRefGoogle Scholar
  13. 13.
    D. E. Diller, J. Chem. Phys. 42:2089 (1965).CrossRefGoogle Scholar
  14. 14.
    H. M. Roder and D. E. Diller, J. Chem. Phys. 52:5028 (1970).CrossRefGoogle Scholar
  15. 15.
    R. T. Jacobsen, R. B. Stewart, R. D. McCarty, and H. J. M. Hanley, “Thermophysical Properties of Nitrogen from the Fusion Line to 3500 R for Pressures to 150,000 psia,” NBS Tech. Note 648 (1973).Google Scholar
  16. 16.
    J. F. Ely and G. C. Straty, J. Chem. Phys. 61:1480 (1974).CrossRefGoogle Scholar
  17. 17.
    H. J. M. Hanley, R. D. McCarty, and W. M. Haynes, J. Phys. Chem. Ref. Data 3:979 (1974).CrossRefGoogle Scholar
  18. 18.
    L. A. Weber, J. Res. NBS 74A:93 (1970).Google Scholar
  19. 19.
    R. D. McCarty and L. A. Weber, “Thermophysical Properties of Oxygen from the Freezing Liquid Line to 600 R for Pressures to 5000 PSIA,” NBS Tech. Note 384 (1971).Google Scholar
  20. 20.
    H. M. Roder and L. A. Weber, “ASRDI Oxygen Technology Survey, Volume I: Thermophysical Properties,” NASA SP-3071 (1972).Google Scholar
  21. 21.
    B. A. Younglove, J. Res. NBS 76A:37 (1972).Google Scholar
  22. 22.
    W. M. Haynes, unpublished data (1972).Google Scholar
  23. 23.
    R. Prydz and G. C. Straty, “The Thermodynamic Properties of Compressed Gaseous and Liquid Fluorine,” NBS Tech. Note 392 (revised) (1973).Google Scholar
  24. 24.
    G. C. Straty and B. A. Younglove, J. Chem. Phys. 57:2255 (1972).CrossRefGoogle Scholar
  25. 25.
    H. J. M. Hanley and R. Prydz, J. Phys. Chem. Ref. Data 1:1101 (1972).CrossRefGoogle Scholar
  26. 26.
    W. M. Haynes, Physica 76:1 (1974).CrossRefGoogle Scholar
  27. 27.
    A. L. Gosman, R. D. McCarty, and J. G. Hust, “Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres,” NSRDS-NBS Monograph 27 (1969).Google Scholar
  28. 28.
    W. M. Haynes, Physica 67:440 (1973).CrossRefGoogle Scholar
  29. 29.
    R. Prydz and R. D. Goodwin, J. Chem. Thermodynamics 4:127 (1972).CrossRefGoogle Scholar
  30. 30.
    R. D. Goodwin and R. Prydz, J. Res. NBS 76A:81 (1972).Google Scholar
  31. 31.
    R. D. McCarty, Cryogenics 14:276 (1974).CrossRefGoogle Scholar
  32. 32.
    R. D. Goodwin, J. Res. NBS 79A:71 (1975).Google Scholar
  33. 33.
    B. A. Younglove, J. Res. NBS 78A:401 (1974).Google Scholar
  34. 34.
    G. C. Straty, Cryogenics 14:367 (1974).CrossRefGoogle Scholar
  35. 35.
    G. C. Straty, Cryogenics 15:729 (1975).CrossRefGoogle Scholar
  36. 36.
    R. D. Goodwin, “Thermophysical Properties of Methane, from 90 to 500 K at Pressures to 700 Bar,” NBS Tech. Note 653 (1974).Google Scholar
  37. 37.
    G. C. Straty and R. D. Goodwin, Cryogenics 13:712 (1973).CrossRefGoogle Scholar
  38. 38.
    J. D. Olson, J. Chem. Phys. 63:474 (1975).CrossRefGoogle Scholar
  39. 39.
    W. M. Haynes, Physica 70:410 (1973).CrossRefGoogle Scholar
  40. 40.
    H. J. M. Hanley, R. D. McCarty, and W. M. Haynes, Cryogenics 15:413 (1975).CrossRefGoogle Scholar
  41. 41.
    J. M. Mollerup, in: Advances in Cryogenic Engineering, Vol. 20, Plenum Press, New York (1975), p. 172.Google Scholar
  42. 42.
    R. D. Goodwin, “Provisional Values for the Thermodynamic Functions of Ethane,” NBSIR 74–398 (1974).Google Scholar
  43. 43.
    R. L. Amey and R. H. Cole, J. Chem. Phys 40:146 (1964).CrossRefGoogle Scholar
  44. 44.
    L. A. Weber, Phys. Rev. A 2:2379 (1970).CrossRefGoogle Scholar
  45. 45.
    L. D. Ikenberry and S. A. Rice, J. Chem. Phys. 39:1561 (1963).CrossRefGoogle Scholar
  46. 46.
    N. Mani, Ph.D. Dissertation, University of Calgary, Calgary, Canada (1971).Google Scholar
  47. 47.
    M. Vincenti-Missoni, J. M. H. Levelt Sengers, and M. S. Green, J. Res. NBS 73A:563 (1969).Google Scholar
  48. 48.
    M. E. Fisher, J. Math. Phys. 6:944 (1964).CrossRefGoogle Scholar
  49. 49.
    A. Michels, J. V. Sengers, and P. S. Van der Gulik, Physica 28:1216 (1962).CrossRefGoogle Scholar
  50. 50.
    T. M. Flynn, “A Bibliography of the Physical Equilibria and Related Properties of Some Cryogenic Systems,” NBS Tech. Note 56 (1960).Google Scholar
  51. 51.
    M. J. Hiza, A. J. Kidnay, and R. C. Miller, Equilibrium Properties of Fluid Mixtures ; A Bibliography of Cryogenic Data to 1975, Plenum Press, New York (1975).Google Scholar
  52. 52.
    N. S. Snider and T. M. Herrington, J. Chem. Phys. 47:2248 (1967).CrossRefGoogle Scholar
  53. 53.
    R. C. Miller, A. J. Kidnay, and M. J. Hiza, AIChE J. 19:145 (1973).CrossRefGoogle Scholar
  54. 54.
    M. R. Cines, J. T. Roach, R. J. Hogan, and C. H. Roland, Chem. Eng. Progr. Symp. Ser. 49(6): 1 (1953).Google Scholar
  55. 55.
    F. B. Sprow and J. M. Prausnitz, AIChE J. 12:780 (1966).CrossRefGoogle Scholar
  56. 56.
    R. Stryjek, P. S. Chappelear, and R. Kobayashi, J. Chem. Eng. Data 19:334 (1974).CrossRefGoogle Scholar
  57. 57.
    S. D. Chang and B. C. -Y. Lu, Chem. Eng. Progr. Symp. Ser. 63:18 (1967).Google Scholar
  58. 58.
    V. G. Fastovskii and Yu. V. Petrovskii, Zh. Fiz. Khim. 31:2317 (1957).Google Scholar
  59. 59.
    S. Fuks and A. Bellemans, Bull. Soc. Chim. Belg. 76:290 (1967).CrossRefGoogle Scholar
  60. 60.
    W. R. Parrish and M. J. Hiza, in: Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York (1974), p. 300.Google Scholar
  61. 61.
    W. R. Parrish and M. J. Hiza, in: Advances in Cryogenic Engineering, Vol. 21, Plenum Press, New York (1976), p. 485.Google Scholar
  62. 62.
    R. C. Miller, private communication.Google Scholar
  63. 63.
    A. J. Kidnay, R. C. Miller, W. R. Parrish, and M. J. Hiza, Cryogenics 15:531 (1975).CrossRefGoogle Scholar
  64. 64.
    M. A. Albright, Technical Publication No. 3, A Report to the GPA, Tulsa, Oklahoma (1973).Google Scholar
  65. 65.
    J. B. Rodosevich and R. C. Miller, in: Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York (1974), p. 339.Google Scholar
  66. 66.
    J. Mollerup and J. S. Rowlinson, Chem. Eng. Sci. 29:1373 (1974).CrossRefGoogle Scholar
  67. 67.
    W. M. Haynes and M. J. Hiza, in: Advances in Cryogenic Engineering, Vol. 21, Plenum Press, New York (1976), p. 516.Google Scholar

Copyright information

© Springer Science+Business Media New York 1960

Authors and Affiliations

  • D. E. Diller
    • 1
  1. 1.Cryogenics DivisionInstitute for Basic StandardsBoulderUSA

Personalised recommendations