Excess Enthalpies for Some Binary Liquid Mixtures of Low-Molecular-Weight Alkanes

  • R. C. Miller
  • L. A. K. Staveley
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 21)


Thermodynamic properties of liquefied natural gases are of current interest in the related transportation and processing industries. Excess enthalpies (constant-pressure heats of mixing) are of use in determining liquid mixture enthalpies for heat exchanger design, in evaluating and correlating vapor-liquid equilibrium data for distillation design, and in evaluating and improving liquid mixture theories.


Liquid Mixture Virial Coefficient Excess Enthalpy Binary Liquid Mixture Excess Gibbs Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Kidnay, M. J. Hiza, and R. C. Miller, Cryogenics 13:575 (1973).CrossRefGoogle Scholar
  2. 2.
    M. A. Albright, Techn. Publ. TP-3, Natural Gas Processors Assoc, Tulsa, Oklahoma (1913).Google Scholar
  3. 3.
    J. Mollerup and J. S. Rowlinson, Chem. Eng. Sci. 29:1373 (1974).CrossRefGoogle Scholar
  4. 4.
    J. B. Rodosevich and R. C. Miller, in: Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York (1974), p. 339.Google Scholar
  5. 5.
    J. Jeener, Rev. Sci. Instr. 28:263 (1957).CrossRefGoogle Scholar
  6. 6.
    R. A. H. Pool and L. A. K. Staveley, Trans. Faraday Soc. 53:1186 (1957).CrossRefGoogle Scholar
  7. 7.
    C. M. Knobler, R. J. J. van Heijningen, and J. J. M. Beenakker, Physica 27:296 (1961).CrossRefGoogle Scholar
  8. 8.
    K. L. Lewis, G. Saville, and L. A. K. Staveley, J. Chem. Thermodynamics 7:389 (1975).CrossRefGoogle Scholar
  9. 9.
    K. L. Lewis and L. A. K. Staveley, J. Chem. Thermodynamics 7:389 (1975).CrossRefGoogle Scholar
  10. 10.
    A. J. B. Cutler and J. A. Morrison, Trans. Farady Soc. 61:429 (1965).CrossRefGoogle Scholar
  11. 11.
    R. D. Goodwin, “The Thermophysical Properties of Methane, from 90 to 500 K at Pressures to 700 Bar,” NBS Tech. Note 653, U. S. Dept. Commerce (1974).Google Scholar
  12. 12.
    R. H. Davies, A. G. Duncan, G. Saville, and L. A. K. Staveley, Trans. Faraday Soc. 63:855 (1967).CrossRefGoogle Scholar
  13. 13.
    J. C. G. Calado and L. A. K. Staveley, J. Chem. Phys. 56:4718 (1972).CrossRefGoogle Scholar
  14. 14.
    J. C. G. Calado, G. A. Garcia, and L. A. K. Staveley, J. Chem. Soc, Faraday Trans. 70:1445 (1974).CrossRefGoogle Scholar
  15. 15.
    M. L. McGlashan and D. J. B. Potter, Proc. Roy. Soc. (London) A267:478 (1962).Google Scholar
  16. 16.
    M. L. McGlashan and C. J. Wormald, Trans. Faraday Soc. 60:646 (1964).CrossRefGoogle Scholar
  17. 17.
    R. D. Goodwin, “Provisonal Values for the Thermodynamic Functions of Ethane,” NBSIR 74–398, U. S. Dept. Commerce (June 1974).Google Scholar
  18. 18.
    L. S. Christiansen and A. Fredenslund, AIChE J. 21:49 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1960

Authors and Affiliations

  • R. C. Miller
    • 1
  • L. A. K. Staveley
    • 2
  1. 1.The University of WyomingLaramieUSA
  2. 2.Wyoming University of OxfordOxfordEngland

Personalised recommendations