Advertisement

On the Consistency of Liquid-Vapor Equilibria Data for Binary Mixtures of Methane with the Light Paraffin Hydrocarbons

  • W. R. Parrish
  • M. J. Hiza
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 21)

Abstract

The process design engineer usually relies upon correlations for predicting the liquid-vapor equilibria of multicomponent systems. These correlations require accurate binary data—both as a test and as a source of binary interaction parameters. With this problem in mind, the authors have compiled and evaluated liquid-vapor equilibria data for four binary systems of interest in liquefied natural gas technology. The systems considered are methane with ethane, propane, n-butane, and isobutane.

Keywords

Critical Temperature Binary Interaction Parameter Mutual Consistency Cryogenic Engineer Total Vapor Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Kidnay, M. J. Hiza, and R. C. Miller, Cryogenics 13:575 (1973).CrossRefGoogle Scholar
  2. 2.
    L. S. Christiansen and A. Fredenslund, AIChE J. 21:49 (1975).CrossRefGoogle Scholar
  3. 3.
    J. B. Rodosevich and R. C. Miller, in: Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York (1974), p. 339.Google Scholar
  4. 4.
    W. R. Parrish and M. J. Hiza, in: Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York (1974), p. 300.Google Scholar
  5. 5.
    A. Blinowska, T. M. Herrington, and L. A. K. Staveley, Cryogenics 13:85 (1973).CrossRefGoogle Scholar

Methane-Ethane System

  1. 6.
    O. T. Bloomer, D. C. Garni, and J. D. Parent, Inst, of Gas Technol. Res. Bull., No. 22 (1953).Google Scholar
  2. 7.
    Shinnder Chang and B. C.-Y. Lu, Chem. Eng. Progr. Symp. Ser. 63(81):18 (1967).Google Scholar
  3. 8.
    M. Guter, D. M. Newitt, and M. Ruhemann, Froc. Roy. Soc. (London) 176A:140 (1940).CrossRefGoogle Scholar
  4. 9.
    C. Hsi and B. C.-Y. Lu, Can. J. Chem. Eng. 49:140 (1971).CrossRefGoogle Scholar
  5. 10.
    D. W. Moran, Ph.D. Dissertation, Imperial College, University of London, London (1959).Google Scholar
  6. 11.
    A. R. Price and R. Kobayashi,J. Chem. Eng. Data 4:40 (1959).CrossRefGoogle Scholar
  7. 12.
    M. Ruhemann, Proc. Roy. Soc. (London) 171A:121 (1939).Google Scholar
  8. 13.
    V. G. Skripka, I. E. Nikitina, L. A. Zhdanovich, A. G. Sirotin, and O. A. Benyaminovich, Gazov. From. 15(12):35 (1970).Google Scholar
  9. 14.
    I. Wichterle and R. Kobayashi, J. Chem. Eng. Data 17:9 (1972).CrossRefGoogle Scholar

Methane-Propane System

  1. 15.
    W. W. Akers, J. F. Burns, and W. R. Fairchild, Ind. Eng. Chem. 46:2531 (1954).CrossRefGoogle Scholar
  2. 16.
    J. C. G. Calado, G. A. Garcia, and L. A. K. Staveley, J. Chem. Soc, Faraday Trans. 1 70(8):1445 (1974).Google Scholar
  3. 17.
    A. J. B. Cutler and J. A. Morrison, Trans. Faraday Soc. 61:429 (1965).CrossRefGoogle Scholar
  4. 18.
    D. P. L. Poon and B. C. Y. Lu, in Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York (1964), p. 292.Google Scholar
  5. 19.
    A. R. Price and R. Kobayashi, J. Chem. Eng. Data 4:40 (1959).CrossRefGoogle Scholar
  6. 20.
    J. G. Roof and J. D. Baron, J. Chem. Eng. Data 12:292 (1967).CrossRefGoogle Scholar
  7. 21.
    H. H. Reamer, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem. 42:534 (1950).CrossRefGoogle Scholar
  8. 22.
    B. H. Sage, W. N. Lacey, and J. G. Schaafsma, Ind. Eng. Chem. 26:214 (1934).CrossRefGoogle Scholar
  9. 23.
    V. G. Skripka, I. E. Kikitina, L. A. Zhdanovich, A. G. Sirotin, and O. A. Benyaminovich, Gazov. Prom. 15(12):35 (1970).Google Scholar
  10. 24.
    H. F. Stoeckli and L. A. K. Staveley, Helv. Chim. Acta. 53(8): 1961 (1970).CrossRefGoogle Scholar
  11. 25.
    I. Wichterle and R. Kobayashi, J. Chem. Eng. Data 17:4 (1972).CrossRefGoogle Scholar

Methane-n-Butane System

  1. 26.
    D. G. Elliot, R. J. J. Chen, P. S. Chappelear, and R. Kobayashi, J. Chem. Eng. Data 19:71 (1974).CrossRefGoogle Scholar
  2. 27.
    L. C. Kahre, J. Chem. Eng. Data 19:67 (1974).CrossRefGoogle Scholar
  3. 28.
    K. L. Mulholland, Ph.D. Dissertation, University of Kansas, Manhattan, Kansas (1970).Google Scholar
  4. 29.
    T. J. Rigas, D. F. Mason, and G. Thodos, Ind. Eng. Chem. 50:1297 (1958).CrossRefGoogle Scholar
  5. 30.
    L. R. Roberts, R. H. Wang, A. Azarnoosh, and J. J. McKetta, J. Chem. Eng. Data 7:484 (1962).CrossRefGoogle Scholar
  6. 31.
    B. H. Sage, B. L. Hicks, and W. N. Lacey, Ind. Eng. Chem. 32:1085 (1940).CrossRefGoogle Scholar
  7. 32.
    R. H. Wang and J. J. McKetta,J. Chem. Eng. Data 9:30 (1964).CrossRefGoogle Scholar

Methane-Isobutane System

  1. 33.
    S. D. Barsuk, V. G. Skripka, and O. A. Benyaminovich, Gazov. From. 15(9):38 (1970).Google Scholar
  2. 34.
    R. H. Olds, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem. 34:1008 (1942).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1960

Authors and Affiliations

  • W. R. Parrish
    • 1
  • M. J. Hiza
    • 1
  1. 1.Cryogenics DivisionInstitute for Basic StandardsBoulderUSA

Personalised recommendations