Recent Developments in the Theory of Fluid Mixtures

  • T. W. Leland
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 21)


At the last Cryogenic Engineering Conference, Zudkevitch and Gray [1] presented a paper on the importance of fluid property predictions to the design of liquefied natural gas (LNG) processes. This paper was disturbing in that it illustrated the serious consequences of discrepancies in calculated properties small enough to bring some degree of satisfaction to those who work at these predictions. In some cases an uncertainty as small as 4 K in a bubble point temperature or a 1% error in liquid density can have exceptionally adverse economic effects. Although there has been notable progress in predicting properties of liquefied natural gas mixtures [2,3], there still remains a challenge to achieve this degree of accuracy consistently. Furthermore, the challenge is even more severe in that we must soon deal with a whole new range of fluids arising from coal and shale processing.


Separation Distance Hard Sphere Pure Component Helmholtz Free Energy Effective Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Zudkevitch and R. D. Gray, in: Advances in Cryogenic Engineering, Vol. 20, Plenum Press, New York (1975), p. 103.Google Scholar
  2. 2.
    G. D. Fisher and T. W. Leland, Ind. Eng. Chem. Fundamentals 9:537 (1970).CrossRefGoogle Scholar
  3. 3.
    J. Mollerup and J. S. Rowlinson, Chem. Eng. Sci. 29:1373 (1974).CrossRefGoogle Scholar
  4. 4.
    J. S. Rowlinson, Liquids and Liquid Mixtures, 2nd ed., Butterworths, London (1969).Google Scholar
  5. 5.
    J. A. Pople, Proc. Roy. Soc. (London) A221:498, 508 (1954).Google Scholar
  6. 6.
    D. Cook and J. S. Rowlinson, Proc. Roy. Soc. (London) A219:405 (1953).Google Scholar
  7. 7.
    Y. D. Chen and W. A. Steele,J. Chem. Phys. 50:1428 (1969)CrossRefGoogle Scholar
  8. 7a.
    Y. D. Chen and W. A. Steele,J. Chem. Phys. 52:5284 (1970).CrossRefGoogle Scholar
  9. 8.
    K. E. Gubbins, C. G. Gray, P. A. Eglestaff, and M. S. Ananth, Mol Phys. 25:1353 (1973)CrossRefGoogle Scholar
  10. 8a.
    K. E. Gubbins, C. G. Gray, P. A. Eglestaff, and M. S. Ananth, Mol Phys. 23:187 (1972).CrossRefGoogle Scholar
  11. 9.
    K. C. Mo and K. E. Gubbins, Chem. Phys. Utters 27:144 (1974).Google Scholar
  12. 10.
    K. C. Mo, K. E. Gubbins, G. Jacucci, and I. R. McDonald, Mol. Phys. 27:1173 (1974).CrossRefGoogle Scholar
  13. 11.
    G. S. Rushbrooke, G. Stell, and J. S. Hoye, Mol. Phys. 26:1199 (1973).CrossRefGoogle Scholar
  14. 12.
    W. A. Steele and S. I. Sandler, J. Chem. Phys. 61:1315 (1974).CrossRefGoogle Scholar
  15. 13.
    S. S. Wang, P. A. Eglestaff, C. G. Gray, and K. E. Gubbins, Chem. Phys. Letters 24:453 (1974).CrossRefGoogle Scholar
  16. 14.
    T. W. Leland and P. S. Chappelear, Ind. Eng. Chem. 60:15 (1968).CrossRefGoogle Scholar
  17. 15.
    P. L. Chueh and J. M. Prausnitz, AIChE J. 13:1099, 1107 (1967).CrossRefGoogle Scholar
  18. 16.
    M. J. Hiza and A. G. Duncan, Phys. Fluids 12:1531 (1969).CrossRefGoogle Scholar
  19. 17.
    G. H. Hudson and J. C. McCoubrey, Trans. Faraday Soc. 56:761 (1960).CrossRefGoogle Scholar
  20. 18.
    R. C. Reid and T. W. Leland, AIChE J. 11:228 (1965)CrossRefGoogle Scholar
  21. 18a.
    R. C. Reid and T. W. Leland, AIChE J. 12:1227 (1966).CrossRefGoogle Scholar
  22. 19.
    B. M. Axilrod and E. Teller,J. Chem. Phys. 11:299 (1943).CrossRefGoogle Scholar
  23. 20.
    R. J. Bell and A. E. Kingston, Proc. Phys. Soc. 88:901 (1966).CrossRefGoogle Scholar
  24. 21.
    G. A. Mansoori and T. W. Leland,J. Chem. Soc, Faraday Trans. II 68:320 (1972).CrossRefGoogle Scholar
  25. 22.
    J. A. Barker, R. A. Fisher, and R. O. Watts, Mol. Phys. 21:657 (1971).CrossRefGoogle Scholar
  26. 23.
    T. L. Hill, Statistical Mechanics, McGraw-Hill, New York (1956).Google Scholar
  27. 24.
    B. J. Alder and T. W. Wainwright,J. Chem. Phys. 33:1439 (1960).CrossRefGoogle Scholar
  28. 25.
    A. Rahman, Phys. Rev. 136:A405 (1964).CrossRefGoogle Scholar
  29. 26.
    W. W. Wood and F. R. Parker, J. Chem. Phys. 27:720 (1957).CrossRefGoogle Scholar
  30. 27.
    I. R. McDonald and K. Singer, Chemistry in Britain 9:54 (1973).Google Scholar
  31. 28.
    J. L. Lebowitz, Phys. Rev. 133:A895 (1964).CrossRefGoogle Scholar
  32. 29.
    J. L. Lebowitz and J. S. Rowlinson,J. Chem. Phys. 41:133 (1964).CrossRefGoogle Scholar
  33. 30.
    H. C. Andersen, J. D. Weeks, and D. Chandler, Phys. Rev. A4:1597 (1971).Google Scholar
  34. 31.
    T. W. Leland, P. S. Chappelear, and B. W. Gamson, AIChE J. 8:482 (1962).CrossRefGoogle Scholar
  35. 32.
    T. W. Leland, J. S. Rowlinson, and G. A. Sather, Trans. Faraday Soc. 64:1447 (1968).CrossRefGoogle Scholar
  36. 33.
    L. Verlet, Phys. Rev. 165:201 (1968).CrossRefGoogle Scholar
  37. 34.
    K. E. Gubbins, private communication (1975).Google Scholar
  38. 35.
    C. H. Twu, K. E. Gubbins, and C. G. Gray, Mol. Phys. 29:713 (1975).CrossRefGoogle Scholar
  39. 36.
    I. Prigogine, The Molecular Theory of Solutions, North-Holland, Amsterdam, Interscience, New York (1957).Google Scholar
  40. 37.
    J. H. Hildebrand and R. B. Scott, The Solubility of Non-Electrolytes, Reinhold, New York (1950).Google Scholar
  41. 38.
    K. C. Chao and J. D. Seader, AIChE J. 7:598 (1961).CrossRefGoogle Scholar
  42. 39.
    E. W. Lyckman, C. A. Eckert, and J. M. Prausnitz, Chem. Eng. Sci. 20:703 (1965).CrossRefGoogle Scholar
  43. 40.
    A. Bellemans and E. De Vos, to be published.Google Scholar
  44. 41.
    J. M. Prausnitz, W. C. Edminster, and K. C. Chao, AIChE J. 6:214 (1960).CrossRefGoogle Scholar
  45. 42.
    J. Gonsalves, Ph.D. Dissertation, Rice University, Houston, Texas (1977).Google Scholar
  46. 43.
    T. L. Hill, Introduction to Statistical Thermodynamics, Addison-Wesley, Reading, Massachusetts (1960).Google Scholar
  47. 44.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley, New York (1954).Google Scholar
  48. 45.
    J. A. Barker and D. Henderson,J. Chem. Phys. 47:4714 (1967).CrossRefGoogle Scholar
  49. 46.
    N. F. Carnahan and K. E. Starling,J. Chem. Phys. 51:635 (1969).CrossRefGoogle Scholar
  50. 47.
    G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland,J. Chem. Phys. 54:1523 (1971).CrossRefGoogle Scholar
  51. 48.
    H. L. Frisch, J. L. Katz, E. Praestgaard, and J. L. Lebowitz, J. Phys. Chem. 70:2016 (1966).CrossRefGoogle Scholar
  52. 49.
    G. A. Mansoori and T. W. Leland,J. Chem. Phys. 53:1931 (1970).CrossRefGoogle Scholar
  53. 50.
    G. A. Mansoori, J. A. Provine, and F. B. Canfield,J. Chem. Phys. 51:5295 (1969).CrossRefGoogle Scholar
  54. 51.
    R. W. Zwanzig,J. Chem. Phys. 22:1420 (1954).CrossRefGoogle Scholar
  55. 52.
    J. S. Rowlinson, Mol. Phys. 7:349 (1964)CrossRefGoogle Scholar
  56. 52a.
    J. S. Rowlinson, Mol. Phys. 8:107 (1965).CrossRefGoogle Scholar
  57. 53.
    R. M. Gibbons, Mol. Phys. 17:81 (1969).CrossRefGoogle Scholar
  58. 54.
    M. Rigby,J. Chem. Phys. 53:1021 (1970).CrossRefGoogle Scholar
  59. 55.
    L. Verlet and J. J. Weis, Phys. Rev. A 5:939 (1972).CrossRefGoogle Scholar
  60. 56.
    P. J. Leonard, D. Henderson, and J. A. Barker, Trans. Faraday Soc. 66:2439 (1970).CrossRefGoogle Scholar
  61. 57.
    E. W. Grundke and D. Henderson, Mol. Phys. 24:269 (1972).CrossRefGoogle Scholar
  62. 58.
    H. Reis, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys. 31:369 (1959).CrossRefGoogle Scholar
  63. 59.
    M. S. Wertheim,J. Chem. Phys. 55:4291 (1971).CrossRefGoogle Scholar
  64. 60.
    S. Sung and D. Chandler, J. Chem. Phys. 56:4989 (1972).CrossRefGoogle Scholar
  65. 61.
    G. Stell, J. Rasaiah, and H. Narang, Mol. Phys. 23:393 (1972).CrossRefGoogle Scholar
  66. 62.
    B. L. Rogers and J. M. Prausnitz, Trans. Faraday Soc. 67:3474 (1971).CrossRefGoogle Scholar
  67. 63.
    J. W. Leach, P. S. Chappelear, and T. W. Leland, Proc. Amer. Petroleum Inst., Section III 46:223 (1966).Google Scholar
  68. 64.
    J. W. Leach, P. S. Chappelear, and T. W. Leland, AIChE J. 14:568 (1968).CrossRefGoogle Scholar
  69. 65.
    K. E. Starling, Hydrocarbon Processing 50(3): 101; (4): 139; (6): 116; (7): 115; (9): 171; (10):90(1972); 51(2):86;(5):107(1973).Google Scholar
  70. 66.
    N. S. Snider and T. M. Herrington,J. Chem. Phys. 47:2248 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1960

Authors and Affiliations

  • T. W. Leland
    • 1
  1. 1.Rice UniversityHoustonUSA

Personalised recommendations