Recent Advances and Applications of Freeze-Drying Technology

  • D. Greiff
  • T. W. G. Rowe
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 21)


Despite the advances which have been made during the past thirty years, freeze-drying continues to be more of an art than a science. Although the value of the material processed annually must be on the order of hundreds of millions of dollars, the process of freeze-drying is still greatly underresearched. Lacking especially is a completely satisfactory unified body of theory which would enable a protocol to be drawn up prior to processing on the basis of a few known properties or parameters of the material to be dried. In spite of these restraints, there exist excellent techniques of instrumentation and process control [1] and powerful statistical methods and mathematical models to predict the shelf-life of freeze-dried material [2,3]. Although these studies enable the processor to work on a firm empirical basis, unfortunately they are still widely ignored or misunderstood.


Influenza Virus Human Serum Albumin Measle Virus Evaporative Cool Product Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. W. G. Rowe, Cryobiology 8:153 (1971).CrossRefGoogle Scholar
  2. 2.
    D. Greiff and W. Rightsel, J. Immunol. 94:395 (1965).Google Scholar
  3. 3.
    D. Greiff and W. A. Rightsel, Cryobiology 3:432 (1967).CrossRefGoogle Scholar
  4. 4.
    P. C. Carman, Trans. Faraday Soc. 44:529 (1948).CrossRefGoogle Scholar
  5. 5.
    K. Tschudin, Helvet. Phys. Acta 19:91 (1946).Google Scholar
  6. 6.
    H. Kramers and S. Stemerding, Appl. Sci. Res. A3:73 (1951).Google Scholar
  7. 7.
    S. Dushman, in: Scientific Foundations of Vacuum Technique, 2nd ed. (J. M. Lafferty, ed.), John Wiley, New York (1962).Google Scholar
  8. 8.
    C. Andrewes, Viruses of Vertebrates, The Williams and Wilkins Company, Baltimore, Maryland (1964).Google Scholar
  9. 9.
    B. I. Wilner, A Classification of the Major Groups of Human and Other Animal Viruses, 2nd ed., Burgess Publishers Company, Minneapolis, Minnesota (1965).Google Scholar
  10. 10.
    W. A. Rightsel and D. Greift, Cryobiology 3:423 (1967).CrossRefGoogle Scholar
  11. 11.
    D. Greift and C. Greift, Cryobiology 9:34 (1972).CrossRefGoogle Scholar
  12. 12.
    D. Greift and W. A. Rightsel, Appl. Microbiol. 16:835 (1968).Google Scholar
  13. 13.
    D. Greift, unpublished studies.Google Scholar
  14. 14.
    D. Greift and W. A. Rightsel, Appl Microbiol. 17:830 (1969).Google Scholar
  15. 15.
    B. Billing, R. Haslam, and N. Wald, Ann. Clin. Biochem. 8:21 (1971).Google Scholar
  16. 16.
    D. Greift and M. Myers, in: Aspects Theoriques et Industriels de la Lyophilisation (L. Rey, ed.), Hermann et Cie, Paris, France (1965), p. 351.Google Scholar
  17. 17.
    D. Greift and W. Rightsel, in: Aspects Theoriques et Industriels de la Lyophilisation (L. Rey, ed.), Hermann et Cie, Paris, France (1965), p. 369.Google Scholar
  18. 18.
    D. Greift, B. Doumas, T. I. Malinin, and B. W. Perry, Cryobiology 13:201 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1960

Authors and Affiliations

  • D. Greiff
    • 1
  • T. W. G. Rowe
    • 1
  1. 1.The Medical College of WisconsinMilwaukeeUSA

Personalised recommendations