Advertisement

Maximum Two-Phase Flow Rates of Sub-Cooled Nitrogen Through a Sharp-Edged Orifice

  • R. J. Simoneau
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 21)

Abstract

The work reported here is part of a series of experiments [1–5] conducted in recent years at the NASA Lewis Research Center involving two-phase choked flow of liquid cryogens. The essential characteristics of these experiments were that the initial stagnation conditions were always single-phase and subcooled and that the pressure drop in the flow passage was always to a level below saturation. A wide range of stagnation parameters from well below to above the thermodynamic critical state were examined. The work covered a variety of fluids and geometric openings. The present study deals with a sharp-edged orifice. The literature on two-phase choked flow has been surveyed by Hsu [6], Henry et al. [7] and Smith [8].

Keywords

Back Pressure Saturation Pressure Maximum Flow Rate Choke Flow Flow Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Hendricks, R. J. Simoneau, and R. C. Ehlers, in: Advances in Cryogenic Engineering, Vol. 18, Plenum Press, New York (1973), p. 150.Google Scholar
  2. 2.
    R. C. Hendricks, R. J. Simoneau, and Y. Y. Hsu, in: Advances in Cryogenic Engineering, Vol. 20, Plenum Press, New York (1975), p. 370.Google Scholar
  3. 3.
    R. J. Simoneau, in: Proceedings of the Tenth Southeastern Seminar on Thermal Sciences (R. G. Watts and H. H. Sogin, eds.), Tulane University, New Orleans, Louisiana (1974), p. 225.Google Scholar
  4. 4.
    R. C. Hendricks, in: Proceedings of Fifth Intern. Cryogenic Engineering Conference, IPC Sci. & Tech. Press, Ltd., Guilford, Surrey, England (1975), p. 278.Google Scholar
  5. 5.
    R. J. Simoneau, “Two-Phase Choked Flow of Subcooled Nitrogen in Converging-Diverging Nozzles,” NASA TN, to be published.Google Scholar
  6. 6.
    Y. Y. Hsu, “Review of Critical Flow Rate, Propagation of Pressure Pulse and Sonic Velocity in Two-Phase Media,” NASA TN D-6814 (1972).Google Scholar
  7. 7.
    R. E. Henry, M. A. Grolmes, and H. K. Fauske, in: Heat Transfer at Low Temperatures (W. Frost, ed.), Plenum Press, New York (1975), p. 229.Google Scholar
  8. 8.
    R. V. Smith, “Critical Two-Phase Flow for Cryogenic Fluids,” NBS Tech. Note 633 (January 1973).Google Scholar
  9. 9.
    M. W. Benjamin and J. G. Miller, Trans. ASME 63:419 (1941).Google Scholar
  10. 10.
    J. F. Bailey, Trans. ASME 73:1109 (1951).Google Scholar
  11. 11.
    J. W. Hoopes, AIChE J. 3(2):268 (1957).CrossRefGoogle Scholar
  12. 12.
    R. J. Richards, R. B. Jacobs, and W. J. Pestalozzi, in: Advances in Cryogenic Engineering, Vol. 4 Plenum Press, New York (1960), p. 272.Google Scholar
  13. 13.
    J. A. Brennan, in: Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1964), p. 292.Google Scholar
  14. 14.
    J. C. Hesson and R. E. Peck, AIChE J. 4(2):207 (1958).CrossRefGoogle Scholar
  15. 15.
    F. W. Bonnet, in: Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1967),. p. 427.Google Scholar
  16. 16.
    J. A. Perry, Trans. ASME 71:757 (1949).Google Scholar
  17. 17.
    R. C. Hendricks, A. K. Baron, and I. C. Peller, “GASP—A Computer Code for Calculating the Thermodynamic and Transport Properties for Ten Fluids: Parahydrogen, Helium, Neon, Methane, Nitrogen, Carbon Monoxide, Oxygen, Fluorine, Argon, and Carbon Dioxide,” NASA TN D-7808 (February 1975).Google Scholar
  18. 18.
    J. Hord, R. B. Jacobs, C. C. Robinson, and L. L. Sparks, ASME Trans. 84:485 (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1960

Authors and Affiliations

  • R. J. Simoneau
    • 1
  1. 1.NASA Lewis Research CenterClevelandUSA

Personalised recommendations