Advertisement

Applications of Superconducting Magnets to Energy with Particular Emphasis on Fusion Power

  • P. Komarek
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 21)

Abstract

There have been many reviews since the first successful construction of superconducting magnets which have touched on the important possible applications of such magnets in energy conversion systems. However, until recently the requirements of physical research, especially in high-energy physics, have been the dominant force contributing to the advancement in magnet technology in the western world, and only a few large projects concerning other applications have been carried out. It is interesting to note that the history of development in Japan, e.g., is completely different. There, the great impetus for the development of superconducting magnet technology was given by the large national program on magnetohyd-rodynamic (MHD) energy conversion, and later by the national levitated-train program, both important engineering applications for superconducting magnets.

Keywords

Energy Storage System Toroidal Field Poloidal Field Fusion Power Energy Conversion System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Aiyama, K. Fushimi, K. Yasukochi, T. Kashara, R. Saito, N. Tada, H. Kimura, and S. Sato, in: Proc. Third Intern. Cryogenic Engineering Conference, IPC Science and Technology Press, London (1974), p.300.Google Scholar
  2. 2.
    J. L. Smith Jr., J. L. Kirtley Jr., and P. Thullen, IEEE Trans. Magnetics MAG-11(2):128 (1975).CrossRefGoogle Scholar
  3. 3.
    C. D. Henning et al., IEEE Trans. Nucl. Sci., NS-18:290 (1971).CrossRefGoogle Scholar
  4. 4.
    C. E. Swannack, D. J. Blevins, C. R. Harder, J. D. G. Lindsay, J. D. Rogers, and D. M. Weldon, IEEE Trans. Magnetics MAG-11(2):504 (1975).CrossRefGoogle Scholar
  5. 5.
    J. B. Heywood and G. J. Womack, Open-Cycle MHD Power Generation, Pergamon Press (1969).Google Scholar
  6. 6.
    V. A. Kirillin, A. E. Sheindlin, E. I. Asinovskii, V. V. Sychev, V. B. Zenkevitch, A. M. Maksimov, and V. A. Altov, Sov. Phys. Dokl. 12:1059 (1968).Google Scholar
  7. 7.
    Z. J. J. Stekly, “The Performance of a Large MHD-type Stable Superconducting Magnet,” Avco Everett Research Laboratory Report AVCO-AMP 215 (1966).Google Scholar
  8. 8.
    K. Koyama, K. Ushio, and I. Todoriki, in: Proc. Third Intern. Cryogenic Engineering Conference, IPC Science and Technology Press, London (1970), p. 351.Google Scholar
  9. 9.
    H. Kimura, T. Doi, S. Sato, T. Kasahara, and T. Iizuka, in: Proc. Third Intern. Cryogenic Engineering Conference, IPC Science and Technology Press, London (1970), p. 364.Google Scholar
  10. 10.
    V. V. Sytchev, in: Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York (1974), p. 67.Google Scholar
  11. 11.
    T. Bohn and P. Komarek, in: Proc. Fourth Intern. Conference Magnet Technology (CONF-720 908), Brookhaven National Laboratory (1972), p. 265.Google Scholar
  12. 12.
    K. Fushimi, O. Ogino, K. Akashi, and T. Moriguchi, in: Proc. Fifth Intern. Conference MHD Electric Power Generation, Munich (1971), p. 459.Google Scholar
  13. 13.
    Z. J. J. Stekly, R. J. Thome, R. F. Cooper, and R. Pape, in: Proc. Twelfth Symp. on Engineering Aspects of MHD, ANL (1972), p. VI.8.1.Google Scholar
  14. 14.
    D. L. Atherton, “Lightweight Superconducting Magnet for Airborne MHD-Generators,” Agard-CP-104 (1972), p. 10–1.Google Scholar
  15. 15.
    J. R. Purcell, S. T. Wang, R. C. Niemann, H. Herman, D. B. Montgomery, V. B. Zenkevitch, and I. A. Kirjenin, “A Superconducting Dipole Magnet for the Second Loop of the U-25 MHD Facility,” presented at Sixth Intern. Conf. MHD Electric Power Generation, Washington (1975).Google Scholar
  16. 16.
    T. Bohn, K. Grawatsch, P. Komarek, and G. Noak, “MHD-Nuclear Power Plants,” FTD-HC-23–862-70 (1970).Google Scholar
  17. 17.
    Y. Mori, in: Proc. Fifth Intern. Conf. MHD Electric Power Generation, Munich (1971), p. 569.Google Scholar
  18. 18.
    D. B. Montgomery, A. M. Hatch, J. R. Purcell, P. Marston, and Z. J. J. Stekly, “Superconducting Magnets for Base Load MHD-Generators,” presented at Sixth Intern. Conf. on MHD Electric Power Generation, Washington (1975).Google Scholar
  19. 19.
    E. Massar, “Elektrische Maschinen mit Supraleitern,” presented at IEKP-Herbstschule über Anwendungen der Supraleitung, Titisee, Germany (1972).Google Scholar
  20. 20.
    A. D. Appleton, IEEE Trans. Magnetics MAG-11:633 (1975).CrossRefGoogle Scholar
  21. 21.
    A. Mailfert, in: Proc. Fifth Intern. Conference Magnetic Techology, Rome (1975), p. 439.Google Scholar
  22. 22.
    A. D. Appleton, in: Proc. Fifth Intern. Conference Magnetic Technology, Rome (1975), p. 447.Google Scholar
  23. 23.
    T. J. Doyle, in: Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York (1974), p. 162.Google Scholar
  24. 24.
    P. Klaudy, Elektrotechnik und Maschinenbau 89 (11):439 (1972).Google Scholar
  25. 25.
    A. D. Appleton, in: Superconducting Machines and Devices (S. Foner and B. B. Schwartz, eds.), NATO Adv. Study Inst. Series, Plenum Press, New York (1974), Chap. 4.Google Scholar
  26. 26.
    P. Thullen, J. C. Dudley, D. L. Greene, J. L. Smith, and H. H. Woodson, IEEE Trans. Power Apparatus and Systems PAS-90:611 (1971).Google Scholar
  27. 27.
    W. B. Bald and B. A. Hands, Cryogenics 14(4): 179 (1974).CrossRefGoogle Scholar
  28. 28.
    R. G. Scurlock and G. K. Thornton, in: Proc. Fifth Intern. Conference Magnetic Technology, Rome (1975), p. 530.Google Scholar
  29. 29.
    A. Hofmann, GfK, internal report, 75–101-MAG (1975).Google Scholar
  30. 30.
    A. Bejan and J. L. Smith, Cryogenics 14(3): 158 (1974).CrossRefGoogle Scholar
  31. 31.
    A. Hofmann, “Optimization of the Refrigeration Requirements for a Superconducting Turbogenerator,” to be published in Proceedings of IIR Congress, Moscow, 1975.Google Scholar
  32. 32.
    D. S. Easton and C. C. Koch, in: Advances in Cryogenic Engineering, Vol. 22, Plenum Press, New York (1976).Google Scholar
  33. 33.
    G. Bogner, in: Superconducting Machines and Devices (S. Foner and B. B. Schwartz, eds.), NATO Adv. Study Inst. Series, Plenum Press, New York (1974), Chap. 7.Google Scholar
  34. 34.
    G. Bogner, “Atw-Schnellstatistik, Kernkraftwerke 1974—Weltübersicht,” Atomwirtschaft 20:132 (1975).Google Scholar
  35. 35.
    T. M. Flynn, R. L. Powell, D. B. Chelton, and B. W. Birmingham, in: Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York (1974), p. 35.Google Scholar
  36. 36.
    M. J. Jefferies, E. E. Gibbs, G. R. Fox, C. H. Holley, and D. M. Willyoung, IEEE Trans. Pow. Apparatus and Systems PAS92: 1659 (1973).CrossRefGoogle Scholar
  37. 37.
    J. H. Parker, R. D. Blaugher, A. Patterson, P. D. Vecchio, and J. L. Mc Cabria, IEEE Trans. Magnetics MAG-11:640 (1975).CrossRefGoogle Scholar
  38. 38.
    United States Atomic Energy Commission, “Fusion Power by Magnetic Confinement,” WASH-1290 UC-20 (1974).Google Scholar
  39. 39.
    H. M. Long, R. L. Brown, R. W. Derby, R. H. Kernohan, M. S. Lubell, J. N. Luton, and P. L. Walstrom, IEEE Trans. Magnetics MAG-11:512 (1975).CrossRefGoogle Scholar
  40. 40.
    E. J. Ziurys, “Superconducting Magnet Development Program for Fusion Power Application,” presented at Fifth Intern. Conference Magnetic Technology, Rome (1975).Google Scholar
  41. 41.
    K. H. Schmitter, IPP-Garching, private communication.Google Scholar
  42. 42.
    I. N. Golovin, Y. N. Dnestrovsky, and D. P. Kostomarov, in: Proc. B.N.E.S. Nuclear Fusion Reactor Conference, Culham, England (1969), p. 194.Google Scholar
  43. 43.
    Z. J. J. Stekly, E. J. Lucas, and W. F. B. Punchard, in: Proc. Fifth Intern. Conference Magnetic Technology, Rome (1975), p. 419.Google Scholar
  44. 44.
    F. Arendt, G. Herppich, A. Knobloch, P. Komarek, and F. Werner, “Energetic and Economic Constraints on the Poloidal Windings in Conceptual Tokamak Fusion Reactors,” presented at Eighth Symposium Fusion Technology, Nordwijk (1974).Google Scholar
  45. 45.
    R. W. Conn, G. L. Kulcinski, et al., “Major Design Features of the Conceptual D-T-Tokamak Power Reactor, UWMAK II,” IAEA-CN-33/G1–2 (1974).Google Scholar
  46. 46.
    B. Badger, M. A. Abdou, et al., “UWMAK I-A Wisconsin Toroidal Fusion Reactor Design,” UWFDM-68 (1973).Google Scholar
  47. 47.
    P. N. Haubenreich, “Tokamak Experimental Power Reactor: Basic Considerations and Initiation of Studies at Oak Ridge,” ORNL-TM-4853 (1975).Google Scholar
  48. 48.
    P. Komarek, “Kryotechnik für Energiefragen unter besonderer Berücksichtigung supraleitender Magnete,” JÜL-956-TP (1973).Google Scholar
  49. 49.
    M. S. Lubell, “Superconducting Toroidal Magnets for Fusion Feasibility Experiments and Power Reactors,” ORNL-TM-4635 (1974).Google Scholar
  50. 50.
    J. Powell, in: Superconducting Machines and Devices (S. Foner and B. B. Schwartz, eds.), Plenum Press, New York (1974), Chap. 1.Google Scholar
  51. 51.
    J. File, R. G. Mills, and G. V. Sheffield, IEEE Trans. Nucl. Sci. NS-18:277 (1971).CrossRefGoogle Scholar
  52. 52.
    R. W. Boom, G. E. Mcintosh, H. A. Peterson, and W. C. Young, in: Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York (1974), p. 117.Google Scholar
  53. 53.
    W. V. Hassenzahl, B. L. Baker, and W. E. Keller, “The Economics of Superconducting Magnetic Energy Storage Systems for Load Leveling,” LA-5377-MS (1973).Google Scholar
  54. 54.
    M. Nozawa and D. Steiner, “An Assessment of the Power Balance in Fusion Reactors,” ORNL-TM-4421 (1974).Google Scholar
  55. 55.
    R. A. Krakowski, F. L. Ribe, T. A. Coultas, and A. J. Hatch, “An Engineering Design Study of a Reference Theta-Pinch Reactor,” LA-5336, ANL-8019 (1974).CrossRefGoogle Scholar
  56. 56.
    A. Knobloch, M. Kottmair, W. Schlueter, and G. Vau, in: Proc. Eighth Symposium Fusion Technology, Nordavijk (1974), p. 361.Google Scholar
  57. 57.
    P. Komarek and A. Ulbricht, in: Proc. Fifth Intern. Conference on Magnetic Technology, Rome (1975), p. 313.Google Scholar
  58. 58.
    H. Köfler, “Energietransfersysteme mit aktiven Induktivitäten,” GfK-IEKP Internal Report (1975).Google Scholar
  59. 59.
    R. W. Boom, H. A. Peterson, and W. C. Young, “Pulsed Power Supply for the U.W. Tokamak Reactor,” Wisconsin Superconducting Energy Storage Project, Vol. I (July 1974), Appendix VI-H.Google Scholar
  60. 60.
    E. P. Dick and C. H. Dustmann, “Inductive Energy Transfer using a Flying Capacitor,” presented at Conference on Energy Storage and Switching, Turino, Italy (1974).Google Scholar
  61. 61.
    K. Grawatsch, H. Köfler, P. Komarek, H. Kornmann, and A. Ulbricht, IEEE Trans. Magnetics MAG-11:586 (1975).CrossRefGoogle Scholar
  62. 62.
    H. Katheder, W. Lehmann, and F. Spath, in: Proc. Third. Intern. Cryogenic Engineering Conference, IPC Science and Technology Press, London (1974), p. 546.Google Scholar
  63. 63.
    R. Knäuer, private communication, Linde A. G., Höllriegelskreuth, Germany (1975).Google Scholar
  64. 64.
    P. Turowski, in: Proc. Fifth Intern. Conference Magnetic Technology, Rome (1975), p. 541.Google Scholar
  65. 65.
    G. Hartwig, in: Advances in Cryogenic Engineering, Vol. 22, Plenum Press, New York (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1960

Authors and Affiliations

  • P. Komarek
    • 1
  1. 1.Institut für Experimentelle KernphysikUniversity and the Kernforschungszentrum KarlsruheKarlsruheWest Germany

Personalised recommendations