• Stanley D. Beck


Insects are ectothermic organisms, and as such their physiological, metabolic, and developmental processes are highly responsive to ambient temperatures. In a volume dealing with the effects of low temperatures on insects, inclusion of a chapter on thermoperiodic effects is quite appropriate, because it is the low-temperature phase of the thermoperiod that appears to play the major role in determining the insect’s response (Danilevskii, 1961; Beck, 1983a).


Cold Acclimation Larval Growth Head Width Phase Duration Cold Hardiness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, A. W. and R. F. Harwood, 1966. Cold tolerance in adult female Culex tarsalis (Coquillet). Mosquito News 26:1–7.Google Scholar
  2. Andrewartha, H. G. 1952. Diapause in relation to the ecology of insects. Biol. Rev. 27:50–107.CrossRefGoogle Scholar
  3. Apple, J. W. 1967. Phenology of black cutworm in southern Wisconsin. Proc. No. Centr. Br. Entomol. Soc. Amr. 22:86–89.Google Scholar
  4. Bares, D. and A. C. Hodson. 1956. Low temperature tolerance of the European corn borer in relation to winter survival in Minnesota. J. Econ. Entomol. 49:19–24.Google Scholar
  5. Baust, J. G. 1982. Environmental triggers to cold hardening. Comp. Biochem. Physiol. 73:563–570.CrossRefGoogle Scholar
  6. Baust, J. G. and R. E. Lee. 1982. Environmental triggers to cryoprotectant modulation in separate populations of the gall fly Eurosta soldaginis (Fitch). J. Insect Physiol. 28:431–436.CrossRefGoogle Scholar
  7. Baust, J. G. and L. K. Miller. 1970. Variations in glycerol content and its influence on cold hardiness in the Alaskan carabid beetle Pterostichus brevicornis. J. Insect Physiol. 16:979–990.CrossRefGoogle Scholar
  8. Beck, S. D. 1950. Nutrition of the European corn borer, Pyrausta nubilalis (Hübn). II. Some effects of diet on larval growth characteristics. Physiol. Zool. 23:353–361.Google Scholar
  9. Beck, S. D. 1962a. Temperature effects on insects: relation to periodism. Proc. No. Centr. Br. Entomol. Soc. Am. 17:18–19.Google Scholar
  10. Beck, S. D. 1962b. Photoperiodic induction of diapause in an insect. Biol. Bull. 122:1–12.CrossRefGoogle Scholar
  11. Beck, S. D. 1967. Water intake and the termination of diapause in the European corn borer, Ostrinia nubilalis, J. Insect Physiol. 13:739–750. Beck, S. D. 1968. Environmental photoperiod and the programming of insect development. In Evolution and Environment, ed. E. T. Drake, pp. 279–296. Yale Univ. Press, New Haven.Google Scholar
  12. Beck, S. D. 1977. Dual system theory of the biological clock: effects of photoperiod, temperature, and thermoperiod on the determination of diapause. J. Insect Physiol. 23:1363–1372.CrossRefGoogle Scholar
  13. Beck, S. D. 1980. Insect Photoperiodism, 2nd ed. Academic Press, New York.Google Scholar
  14. Beck, S. D. 1982. Thermoperiodic induction of larval diapause in the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 28:273–277.CrossRefGoogle Scholar
  15. Beck, S. D. 1983a. Insect Thermoperiodism. Annu. Rev. Entomol. 28:91–108.CrossRefGoogle Scholar
  16. Beck, S. D. 1983b. Thermal and thermoperiodic effects on larval development and diapause in the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 29:107–112.CrossRefGoogle Scholar
  17. Beck, S. D. 1984. Effect of temperature on thermoperiodic determination of diapause. J. Insect Physiol. 30:383–386.CrossRefGoogle Scholar
  18. Beck, S. D. 1985. Effects of thermoperiod on photoperiodic determination of diapause in Ostrinia nubilalis. J. Insect Physiol. 31:41–46.CrossRefGoogle Scholar
  19. Beck, S. D. 1986. Effects of photoperiod and thermoperiod on growth of Agrotis ipsilon (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 79:821–828.Google Scholar
  20. Beck, S. D. 1987. Thermoperiod-photoperiod interactions in the determination of diapause in Ostrinia nubilalis. J. Insect Physiol. 33:707–712.CrossRefGoogle Scholar
  21. Beck, S. D. 1988a. Thermoperiod and larval development of Agrotis ipsilon (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 81:831–835.Google Scholar
  22. Beck, S. D. 1988b. Cold acclimation of Agrotis ipsilon (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 81:964–968.Google Scholar
  23. Beck, S. D. and W. Hanec. 1960. Diapause in the European corn borer, Pyrausta nubilalis (Hübn.). J. Insect Physiol. 4:304–318.CrossRefGoogle Scholar
  24. Benschoter, C. A. 1968. Influence of light manipulation on diapause of Heliothis zea and H. virescens. Ann. Entomol. Soc. Am. 61:1272–1274.Google Scholar
  25. Bowen, M. F. and S.D. Skopik. 1976. Insect photoperiodism: the “T” experiment as evidence for an hourglass mechanism. Science 192:59–60.CrossRefGoogle Scholar
  26. Bradshaw, W. E. 1980. Thermoperiodism and the thermal environment of the pitcher plant mosquito, Wyeomyia smithii. Oecologia 46:13–17.CrossRefGoogle Scholar
  27. Butler, G. D. and J. D. Lopez. 1980. Trichogramma pretiosum: development in relation to constant and fluctuating temperatures. Ann. Entomol. Soc. Am. 73:671–673.Google Scholar
  28. Carey, J. R. and C. C. Beegle. 1975. Black cutworm overwintering investigations in infested greenhouses. Proc. No. Centr. Br. Entomol. Soc. Am. 30:59–64.Google Scholar
  29. Champlain, R. A. and G. D. Butler. 1967. Temperature effects on the development of the egg and nymphal stages of Lygus hesperus (Hemiptera: Miridae). Ann. Entomol. Soc. Am. 60:519–521.Google Scholar
  30. Chandrashekaran, M. K. 1974. Phase shifts in the Drosophila pseudoobscura circadian rhythm evoked by temperature pulses of varying durations. J. Interdis. Cycle Res. 5:371–380.CrossRefGoogle Scholar
  31. Chen, C-P., D. L. Denlinger, and R. E. Lee. 1987. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: developmental rate, cold tolerance, and glycerol concentrations. Ann. Entomol. Soc. Am. 80:790–796.Google Scholar
  32. Chippendale, G. M., A. S. Reddy, and C. L. Catt. 1976. Photoperiodic and thermoperiodic interaction in the regulation of the larval diapause of Diatraea grandiosella. J. Insect Physiol. 22:823–828.CrossRefGoogle Scholar
  33. Danilevskii, A. S. 1961. Photoperiodism and Seasonal Development of Insects, English translation, 1965 Oliver and Boyd, London.Google Scholar
  34. Delisle, J. and J. N. McNeil. 1987. Calling behaviour and pheromone titre of the true armyworm, Pseudaletia unipuncta (Haw.) (Lepidoptera: Noctuidae), under different temperature and photoperiodic conditions. J. Insect Physiol. 33:315–324.CrossRefGoogle Scholar
  35. Dreisig, H. and E. T. Nielsen. 1971. Circadian rhythm of locomotion and its temperature dependence in Blattella germanica. J. Exp. Biol. 54:187–198.Google Scholar
  36. Dumortier, B. and J. Brunnarius. 1977a. L’information thermoperiodique et l’induction de la diapause chez Pieris brassicae L. C. R. Acad. Sci. Paris 284:957–960.Google Scholar
  37. Dumortier, B. and J. Brunnarius. 1977b. Existance d’une composante circadienne dans l’induction thermoperiodique da la diapause chez Pieris brassicae L. C. R. Acad. Sci. Paris 285:361–364.Google Scholar
  38. Gangavalli, R. R. and M. T. Aliniazee. 1985. Diapause induction in the oblique-banded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae): role of photoperiod and temperature. J. Insect Physiol. 31:831–835.CrossRefGoogle Scholar
  39. Gerber, G. H. and M. A. Howlader. 1987. The effects of photoperiod and temperature on calling behaviour and egg development of the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). J. Insect Physiol. 33:429–436.CrossRefGoogle Scholar
  40. Gorsuch, C. S., M. G. Karandinos, and C. F. Koval. 1975. Daily rhythm of Synanthedon pictipes (Lepidoptera: Aegeriidae) female calling behavior in Wisconsin: temperature effects. Entomol. Exp. Appl. 18:367–376.CrossRefGoogle Scholar
  41. Greenfield, M. D. and M. G. Karandinos. 1976. Oviposition rhythm of Synanthedon pictipes under a 16:8 L:D photoperiod and various temperatures. Environ. Entomol. 5:712–713.Google Scholar
  42. Hagstrum, D. W. and W. R. Hagstrum. 1970. A simple device for producing fluctuating temperatures, with an explanation of the ecological significance of fluctuating temperatures. Ann. Entomol. Soc. Am. 63:1385–1389.Google Scholar
  43. Hagstrum, D. W. and C. E. Leach. 1973. Role of constant and fluctuating temperatures in determining development time and fecundity of three species of stored-products Coleoptera. Ann. Entomol. Soc. Am. 66:407–410.Google Scholar
  44. Hagstrum, D. W. and C. F. Tomblin. 1973. Oviposition by the almond moth, Cadra cautella, in response to falling temperature and onset of darkness. Ann. Entomol. Soc. Am. 66:809–812.Google Scholar
  45. Hanec, W. and S. D. Beck. 1960. Cold hardiness in the European corn borer, Pyrausta nubilalis (Hübn). J. Insect Physiol. 5:169–180.CrossRefGoogle Scholar
  46. Hodson, A. C. and M. A. Al Rawy. 1958. Temperature in relation to developmental thresholds of insects. Proc. 10th Int. Cong. Entomol. 2:61–65.Google Scholar
  47. Horwath, K. L. and J. G. Duman. 1982. Involvement of the circadian system in photoperiodic regulation of insect antifreeze proteins. J. Exp. Zool. 219:267–270.CrossRefGoogle Scholar
  48. Horwath, K. L. and J. G. Duman. 1983. Photoperiodic and thermal regulation of antifreeze protein levels in the beetle Dendroides canadensis. J. Insect Physiol. 29:907–917.CrossRefGoogle Scholar
  49. Horwath, K. L. and J. G. Duman. 1984. Further studies on the involvement of the circadian system in photoperiodic control of antifreeze protein production in the beetle Dendroides canadensis. J. Insect Physiol. 30:947–955.CrossRefGoogle Scholar
  50. Horwath, K. L. and J. G. Duman. 1986. Thermoperiodic involvement in antifreeze protein production in the cold hardy beetle Dendroides canadensis: implications for photoperiodic time measurment. J. Insect Physiol. 32:799–806.CrossRefGoogle Scholar
  51. Howe, R. W. 1967. Temperature effects on embryonic development in insects. Ann. Rev. Entomol. 12:15–42.CrossRefGoogle Scholar
  52. Lees, A. D. 1955. The Physiology of Diapause in Arthropods. Cambridge University Press, Cambridge.Google Scholar
  53. Lees, A. D. 1986. Some effects of temperature on the hour glass photoperiodic timer in the aphid Megoura viciae. J. Insect Physiol. 32:79–89.CrossRefGoogle Scholar
  54. Lees, A. D. 1987. The behaviour and coupling of the photoreceptor and hourglass timer at low temperature in the aphid Megoura viciae. J. Insect Physiol. 33:885–891.CrossRefGoogle Scholar
  55. Lin, A., A. C. Hodson, and A. G. Richards. 1954. An analysis of threshold temperatures for the development of Oncopeltus and Tribolium eggs. Physiol. Zool. 27:287–311.Google Scholar
  56. Loughner, G. E. 1972. Mating behavior of the European corn borer, Ostrinia nubilalis, as influenced by photoperiod and thermoperiod. Ann. Entomol. Soc. Am. 65:1016–1019.Google Scholar
  57. Masaki, S. and S. Kikukawa. 1981. The diapause clock in a moth: response to temperature signals. In Biological Clocks in Seasonal Reproductive Cycles, pp. 101–112. eds. B. K. Follett and D. E. Follett, Wright, Bristol.Google Scholar
  58. Matsuura, H. and K. Miyashita. 1978. Response to photoperiod of Agrotis ipsilon in relation to overwintering. Jap. J. Appl. Entomol. Zool. 22:7–11.CrossRefGoogle Scholar
  59. Matteson, J. W. and G. C. Decker. 1965. Development of the European corn borer at controlled constant and variable temperatures. J. Econ. Entomol. 58:344–349.Google Scholar
  60. McLeod, D. G. R. and S. D. Beck. 1963. Photoperiodic termination of diapause in an insect. Biol. Bull. 124:84–96.CrossRefGoogle Scholar
  61. Menaker, M. and G. Gross. 1965. Effect of fluctuating temperature on diapause induction in the pink bollworm. J. Insect Physiol. 11:911–914.CrossRefGoogle Scholar
  62. Messenger, P. S. 1964. The influence of rhythmically fluctuating temperatures on the development and reproduction of the spotted alfalfa aphid, Therioaphis maculata. J. Econ. Entomol. 57:71–76.Google Scholar
  63. Messenger, P. S. 1969. Bioclimatic studies of the aphid parasite Praon exsoletum. 2. Thermal limits to development and occurrence of diapause. Ann. Entomol. Soc. Am. 62:1026–1031.Google Scholar
  64. Neumann, D. and F. Heimbach. 1975. Das Wachstum des Kohl weisslings bei konstanten und tagesperiodisch wechselnden Temperaturen. Oecologia 20:135–141.CrossRefGoogle Scholar
  65. Nordin, J. H., Z. Cui, and C. M. Yin. 1984. Cold-induced glycerol accumulation by Ostrinia nubilalis larvae is developmentally regulated. J. Insect Physiol. 30:563–566.CrossRefGoogle Scholar
  66. Page, T. L. 1985. Circadian organization in cockroaches: effects of temperature cycles on locomotor activity. J. Insect Physiol. 31:235–242.CrossRefGoogle Scholar
  67. Pio, C. J. and J. G. Baust. 1988. Effects of temperature cycling on cryoprotectant profiles in the goldenrod gall fly, Eurosta solidaginis (Fitch). J. Insect Physiol. 34:767–771.CrossRefGoogle Scholar
  68. Pittendrigh, C. S. 1966. The circadian oscillation in Drosophila pseudoobscura pupae: a model for the biological clock. Z. Pflanzenphysiol. 54:275–307.Google Scholar
  69. Rence, B. G. 1984. A comparison of light and temperature entrainment: evidence for a multioscillator circadian system. Physiol. Entomol. 9:215–227.CrossRefGoogle Scholar
  70. Rence, B. G. and W. Loher. 1975. Arrhythmically singing crickets: thermoperiodic reentrainment after bilobectomy. Science 190:385–387.CrossRefGoogle Scholar
  71. Richards, A. G. 1957. Cumulative effects of optimum and suboptimum temperatures on insect development. In The Influences of Temperature on Biological Systems, pp. 145–162. American Physiological Society, Washington, DC.Google Scholar
  72. Richards, A. G. and S. Suanraksa. 1962. Energy expenditure during embryonic development under constant versus variable temperatures (Oncopeltus fasciatus (Dallas)). Entomol. Exp. Appl. 5:167–178.CrossRefGoogle Scholar
  73. Roberts, S. K. 1962. Circadian activity rhythms in cockroaches. II. Entrainment and phase setting. J. Cell. Com. Physiol. 59:175–186.CrossRefGoogle Scholar
  74. Rock, G. C. 1983. Thermoperiodic effects on the regulation of larval diapause in the tufted apple budworm (Lepidoptera: Tortricidae). Environ. Entomol. 12:1500–1503.Google Scholar
  75. Roush, R. T. and J. C. Schneider. 1985. Thermoperiod and photoperiod as temporal cues for adult eclosion of Heliothis virescens (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 78:514–517.Google Scholar
  76. Saunders, D. S. 1973. Thermoperiodic control of diapause in an insect: theory of internal coincidence. Science 181:358–360.CrossRefGoogle Scholar
  77. Saunders, D. S. 1984. Photoperiodic time measurement in Sarcophaga argyrostoma: an attempt to use daily temperature cycles to distinguish external from internal coincidence. J. Comp. Physiol. 154:789–794.CrossRefGoogle Scholar
  78. Scott, W. N. 1936. An experimental analysis of the factors governing the hour of emergence of adult insects from the pupae. Trans. R. Entomol. Soc. 85:303–329.CrossRefGoogle Scholar
  79. Siddiqui, W. H., C. A. Barlow, and P. A. Randolph. 1973. Effects of some constant and alternating temperatures on population growth of the pea aphid, Acyrthosiphonpisum (Homoptera: Aphididae). Can. Entomol. 105:145–156.CrossRefGoogle Scholar
  80. Skopik, S. D. and M. F. Bowen. 1976. Insect photoperiodism—hourglass measures photoperiodic time in Ostrinia nubilalis. J. Comp. Physiol. 111:249–259.CrossRefGoogle Scholar
  81. Story, R. N. and A. J. Keaster. 1982. The overwintering biology of the black cutworm, Agrotis ipsilon, in field cages (Lepidoptera: Noctuidae). J. Kansas Entomol. Soc. 55:621–624.Google Scholar
  82. Tauber, M. J., C. A. Tauber, and S. Masaki. 1986. Seasonal Adaptation of Insects. Oxford University Press, New York.Google Scholar
  83. Van Houten, Y. M., W. P. J. Overmeer, A. Q. Van Zon, and A. Veerman. 1988. Thermoperiodic induction of diapause in the predaceous mite, Amblyseius potentillae. J. Insect Physiol. 34:285–290.CrossRefGoogle Scholar
  84. Ward, J. V. and J. A. Stanford. 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annu. Rev. Entomol. 27:97–117.CrossRefGoogle Scholar
  85. Welbers, P. 1975. Der Einfluss von tagesperiodischen Wechseltemperaturen bei der Motte Pectinophora. II. Der Sauerstoffverbrauch. Oecologia 21:43–56.CrossRefGoogle Scholar
  86. Went, F. W. 1959. The periodic aspect of photoperiodism and thermoperiodicity. In Photoperiodism and Related Phenomena in Plants and Animals, ed. R. B. Withrow, pp. 551–564. American Association Advancement of Science, Washington, DC.Google Scholar
  87. Wohlfahrt, T. A. 1967. Warme als potentieller Zeitgeber für das Schlupfen des Segeifalters Iphiclides podalirius (L.). Naturwiss. 54:121–122.CrossRefGoogle Scholar
  88. Yeargan, K. V. 1980. Effects of temperatures on developmental rate of Telenomus podisi (Hymenoptera: Scelionidae). Ann. Entomol. Soc. Am. 73:339–342.Google Scholar
  89. Zimmerman, W. F., C. S. Pittendrigh, and T. Pavlidis. 1968. Temperature compensation of the circadian oscillation in Drosophila pseudoobscura and its entrainment by temperature cycles. J. Insect Physiol. 14:669–684.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • Stanley D. Beck

There are no affiliations available

Personalised recommendations