Relationship between Cold Hardiness and Diapause

  • David L. Denlinger


Cold hardiness and diapause are both essential components of winter survival for most insects of the temperate zone. But, in many cases, it is not clear how these two are related. Are they independent events or is cold hardiness a component of the diapause syndrome? Both independence (Lees, 1955; Salt, 1961; Ring, 1972) and dependence (Asahina, 1969; Mansingh, 1971, 1974) of cold hardiness and diapause have been defended vigorously, and indeed evidence for both possibilities can be found in the literature. In this chapter I argue that cold hardiness can be achieved independently of diapause, but cold hardiness is often a component of the diapause syndrome and the expression of diapause frequently extends the insect’s capacity to cold harden.


Cold Tolerance Juvenile Hormone Cold Hardiness Cold Hardening Pupal Diapause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adedokun, T. A. and D. L. Denlinger. 1984. Cold-hardiness: a component of the diapause syndrome in pupae of the flesh flies, Sarcophaga crassipalpis and S. bullata. Physiol. Entomol. 9:361–364.CrossRefGoogle Scholar
  2. Adedokun, T. A. and D. L. Denlinger. 1985. Metabolic reserves associated with pupal diapause in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 31:229–233.CrossRefGoogle Scholar
  3. Andrewartha, H. G. 1952. Diapause in relation to the ecology of insects. Biol. Rev. 27:50–107.CrossRefGoogle Scholar
  4. Asahina, E. 1969. Frost resistance in insects. Adv. Insect Physiol. 6:1–49.CrossRefGoogle Scholar
  5. Baust, J. G. 1982. Environmental triggers to cold hardening. Comp. Biochem. Physiol. 73:563–570.CrossRefGoogle Scholar
  6. Baust, J. G. and R. E. Lee, Jr. 1982. Environmental triggers to cryoprotectant modulation in separate populations of the gall fly, Eurosta solidaginis (Fitch). J. Insect Physiol. 28:431–436.CrossRefGoogle Scholar
  7. Beck, S. D. 1980. Insect Photoperiodism, 2nd ed. Academic Press, New York.Google Scholar
  8. Bodnaryk, R. P. 1977. Stages of diapause development in the pupa of Mamestra configurata Wlk. J. Insect Physiol. 23:537–542.CrossRefGoogle Scholar
  9. Burton, V., H. K. Mitchell, P. Young, and N. S. Petersen. 1988. Heat shock protection against cold stress of Drosophila melanogaster. Mol. Cell. Biol. 8:3550–3552.Google Scholar
  10. Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987a. Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.Google Scholar
  11. Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987b. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: developmental rate, cold tolerance, and glycerol concentrations. Ann. Entomol. Soc. Am. 80:790–796.Google Scholar
  12. Chino, H. 1957. Carbohydrate metabolism in the diapause egg of the silkworm, Bombyx mori—I. Diapause and the change in glycogen content. Embryologia 3:295–316.CrossRefGoogle Scholar
  13. Chino, H. 1958. Carbohydrate metabolism in the diapause egg of the silkworm, Bombyx mori—II. Conversion of glycogen into sorbitol and glycerol during diapause. J. Insect Physiol. 2:1–12.CrossRefGoogle Scholar
  14. Chippendale, G. M. 1973. Diapause of the southwestern corn borer, Diatraea grandiosella: utilization of fat body and haemolymph reserves. Entomol. Exp. Appl. 16:395–406.CrossRefGoogle Scholar
  15. Chippendale, G. M. 1983. Larval and pupal diapause. In Endocrinology of Insects, eds. R. G. H. Downer and H. Laufer, pp. 343–356. Alan R. Liss, New York.Google Scholar
  16. Cox, P. D., M. Mfon, S. Parkin, and J. E. Seaman. 1981. Diapause in a Glasgow strain of the flour moth, Ephestia kuehniella. Physiol. Entomol. 6:349–356.CrossRefGoogle Scholar
  17. Danks, H. V. 1987. Insect Dormancy: An Ecological Prespective. Biological Survey of Canada, Ottawa.Google Scholar
  18. Denlinger, D. L. 1985. Hormonal control of diapause. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 8, eds. G. A. Kerkut and L. I. Gilbert, pp. 353–412. Pergamon Press, Oxford.Google Scholar
  19. Denlinger, D. L. 1986. Dormancy in tropical insects. Annu. Rev. Entomol. 31:239–264.CrossRefGoogle Scholar
  20. Denlinger, D. L., J. H. Willis, and G. Fraenkel. 1972. Rates and cycles of metabolism in diapausing Sarcophaga pupae. J. Insect Physiol. 18:871–882.CrossRefGoogle Scholar
  21. Denlinger, D. L., J. Giebultowicz, and T. Adedokun. 1988. Insect diapause: dynamics of hormone sensitivity and vulnerability to environmental stress. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 309–324. Wroclaw Technical University Press, Wroclaw.Google Scholar
  22. Duman, J. G. 1977. Environmental effects on antifreeze levels in larvae of the darkling beetle, Meracantha contracta. J. Exp. Biol. 201:333–337.Google Scholar
  23. Fields, P. G. and J. N. McNeil. 1988. The cold-hardiness of Ctenucha virginica (Lepidoptera: Arctiidae) larvae, a freezing-tolerant species. J. Insect Physiol. 34:269–277.CrossRefGoogle Scholar
  24. Frankos, V. H. and A. P. Platt. 1976. Glycerol accumulation and water content in larvae of Limenitis archippus: their importance to winter survival. J. Insect Physiol. 22:623–628.CrossRefGoogle Scholar
  25. Goettel, M. S. and B. J. R. Philogene. 1980. Further studies on the biology of the banded woolybear, Pyrrharctia (Isia) Isabella (J. E. Smith) (Lepidoptera: Arctiidae). IV. Diapause development as influenced by temperature. Can. J. Zool. 58:317–320.CrossRefGoogle Scholar
  26. Hamilton, M. D., R. R. Rojas, and J. G. Baust. 1986. Juvenile hormone: modulation of cryoprotectant synthesis in Eurosta solidaginis by a component of the endocrine system. J. Insect Physiol. 32:971–979.CrossRefGoogle Scholar
  27. Hanec, W. and S. D. Beck. 1960. Cold hardiness in the European corn borer, Pyrausta nubilalis (Hubn.). J. Insect Physiol. 5:169–180.CrossRefGoogle Scholar
  28. Henrich, V. C. and D. L. Denlinger. 1982a. A maternal effect that eliminates pupal diapause in progeny of the flesh fly, Sarcophaga bullata. J. Insect Physiol. 28:881–884.CrossRefGoogle Scholar
  29. Henrich, V. C. and D. L. Denlinger. 1982b. Selection for late pupariation affects diapause incidence and duration in the flesh fly, Sarcophaga bullata. Physiol. Entomol. 7:407–411.CrossRefGoogle Scholar
  30. Horwath, K. L. and J. G. Duman. 1982. Involvement of the circadian system in photoperiodic regulation of insect antifreeze proteins. J. Exp. Zool. 219:269–270.CrossRefGoogle Scholar
  31. Horwath, K. L. and J. G. Duman. 1983a. Photoperiodic and thermal regulation of antifreeze protein levels in the beetle Dendroides canadensis. J. Insect Physiol. 29:907–917.CrossRefGoogle Scholar
  32. Horwath, K. L. and J. G. Duman. 1983b. Preparatory adaptations for winter survival in the cold hardy beetles, Dendroides canadensis and Dendroides concolor. J. Comp. Physiol. 151:225–232.Google Scholar
  33. Horwath, K. L. and J. G. Duman. 1983c. Induction of antifreeze protein production by juvenile hormone in larvae of the beetle, Dendroides canadensis. J. Comp. Physiol. 151:233–240.Google Scholar
  34. Hoy, M. A. 1978. Variability in diapause attributes of insects and mites: some evolutionary and practical implications. In Evolution of Insect Migration and Diapause, ed. H. Dingle, pp. 101–126. Springer, New York.CrossRefGoogle Scholar
  35. Kageyama, T. and E. Ohnishi. 1973. Carbohydrate metabolism in the eggs of the silkworm, Bombyx mori. II. Anaerobiosis and polyol formation. Dev. Growth Different. 15:47–55.CrossRefGoogle Scholar
  36. Kimura, M. T. 1982. Inheritance of cold hardiness and sugar contents in two closely related species, Drosophila takahashii and D. lutescens. Jap. J. Genet. 57:575–580.CrossRefGoogle Scholar
  37. Kukal, O. and J. G. Duman. 1989. Switch in the overwintering strategy of two insect species and latitudinal differences in cold hardiness. Can. J. Zool. 67:825–827.CrossRefGoogle Scholar
  38. Kukal, O., J. G. Duman, and A. S. Serianni. 1989. Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. J. Comp. Physiol. 158:661–671.Google Scholar
  39. Lee, R. E., Jr. and D. L. Denlinger. 1985. Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiol. Entomol. 10:309–315.CrossRefGoogle Scholar
  40. Lee, R. E., Jr., C-P. Chen, M. H. Meacham, and D. L. Denlinger. 1987a. Ontogenetic patterns of cold-hardiness and glycerol production in Sarcophaga crassipalpis. J. Insect Physiol. 33:587–592.CrossRefGoogle Scholar
  41. Lee, R. E., Jr., C-P. Chen, and D. L. Denlinger. 1987b. A rapid cold-hardening process in insects. Science 238:1415–1417.CrossRefGoogle Scholar
  42. Lee, R. E., Jr., D. L. Denlinger, and C-P. Chen. 1988. Insect cold-hardiness and diapause: regulatory relationships. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 243–262. Wroclaw Technical University Press, Wroclaw.Google Scholar
  43. Lees, A. D. 1955. The Physiology of Diapause in Arthropods. Cambridge Univeristy Press, Cambridge.Google Scholar
  44. Lefevere, K. S., A. B. Koopmanschap, and C. A. D. de Kort. 1989. Changes in the concentrations of metabolites in haemolymph during and after diapause in female Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 35:121–128.CrossRefGoogle Scholar
  45. Mansingh, A. 1971. Physiological classification of dormancies in insects. Can. Entomol. 103:983–1009.CrossRefGoogle Scholar
  46. Mansingh, A. 1974. Studies on insect dormancy. II. Relationship of cold-hardiness to diapause and quiescence in the eastern tent caterpillar, Malacosoma americanum (Fab.), (Lasiocampidae: Lepidoptera). Can. J. Zool. 52:629–637.CrossRefGoogle Scholar
  47. Mansingh, A. and B.N. Smallman. 1972. Variation in polyhydric alcohol in relation to diapause and cold-hardiness in the larvae of Isia Isabella. J. Insect Physiol. 18:1565–1571.CrossRefGoogle Scholar
  48. Masaki, S. 1980. Summer diapause. Annu. Rev. Entomol. 25:1–25.CrossRefGoogle Scholar
  49. Meats, A. 1983. Critical periods for developmental acclimation to cold in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 29:943–946.CrossRefGoogle Scholar
  50. Meyer, S. G. E. 1978. Effects of heat, cold, anaerobiosis and inhibitors on metabolite concentrations in larvae of Callitroga macellaria. Insect Biochem. 8:471–477.CrossRefGoogle Scholar
  51. Morris, G. J, G. Coulson, M. A. Meyer, M. R. McLellan, B. J. Fuller, B. W. W. Grout, H. W. Pritchard, and S. C. Knight. 1983. Cold shock—a widespread cellular reaction. Cryo-Lett. 4:179–192.Google Scholar
  52. Nordin, J. H., Z. Cui, and C-M. Yin. 1984. Cold-induced glycerol accumulation by Ostrinia nubialis larvae is developmentally regulated. J. Insect Physiol. 30:563–566.CrossRefGoogle Scholar
  53. Patterson, J. L. and J. G. Duman. 1978. The role of the thermal hysteresis factor in Tenebrio molitor larvae. J. Exp. Biol. 74:37–45.Google Scholar
  54. Pio, C. J. and J. G. Baust. 1988. Effects of temperature cycling on cryoprotectant profiles in the goldenrod gall fly, Eurosta solidaginis (Fitch). J. Insect Physiol. 34:767–771.CrossRefGoogle Scholar
  55. Ring, R. A. 1972. Relationship between diapause and supercooling in the blowfly, Lucilia sericata (Mg.) (Diptera: Calliphoridae). Can J. Zool. 50:1601–1605.CrossRefGoogle Scholar
  56. Rojas, R. R., M. D. Hamilton, and J. G. Baust. 1987. Juvenile hormone modulation of insect cold hardening: ice-nucleating activity. Cryobiol. 24:465–472.CrossRefGoogle Scholar
  57. Salt, R. W. 1958. Application of nucleation theory to the freezing of supercooled insects. J. Insect Physiol. 2:178–188.CrossRefGoogle Scholar
  58. Salt, R. W. 1959. Role of glycerol in the cold-hardening of Bracon cephi (Gahan). Can. J. Zool. 37:59–69.CrossRefGoogle Scholar
  59. Salt, R. W. 1961. Principles of insect cold-hardiness. Annu. Rev. Entomol. 6:55–74.CrossRefGoogle Scholar
  60. Saunders, D. S. 1982. Insect Clocks, 2nd ed. Pergamon Press, Oxford.Google Scholar
  61. Saunders, D. S., V. C. Henrich, and L. I. Gilbert. 1989. Induction of diapause in Drosophila melanogaster. photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc. Natl. Acad. Sci. USA 86:3748–3752.CrossRefGoogle Scholar
  62. Shimada, K. 1982. Glycerol accumulation in developmentally arrested pupae of Papilio machaon obtained by brain removal. J. Insect Physiol. 28:975–978.CrossRefGoogle Scholar
  63. Shimada, K. 1989. Ice-nucleating activity in the alimentary canal of the freezing-tolerant prepupae of Trichiocampus populi (Hymenoptera: Tenthredinidae). J. Insect Physiol. 35:113–120.CrossRefGoogle Scholar
  64. Siegelt, K. J. 1987. Carbohydrate metabolism in starved fifth instar larvae of Manduca sexta. Arch. Insect Biochem. Physiol. 4:151–160.CrossRefGoogle Scholar
  65. Siegelt, K. J. and R. Ziegler. 1983. A hormone from the corpora cardiaca controls fat body glycogen Phosphorylase during starvation in tobacco hornworm larvae. Nature 301:526–527.CrossRefGoogle Scholar
  66. Sømme, L. 1965. Further observations on glycerol and cold-hardiness in insects. Can. J. Zool. 43:765–770.CrossRefGoogle Scholar
  67. Sømme, L. 1966. The effect of temperature, anoxia, or injection of variuos substances on haemolymph composition and supercooling in larvae of Anagasta kuehniella (Zell.). J. Insect Physiol. 12:1069–1083.CrossRefGoogle Scholar
  68. Sømme, L. and K. E. Zachariassen. 1981. Adaptations to low temperature in high altitude insects from Mount Kenya Ecol. Entomol. 6:199–204.CrossRefGoogle Scholar
  69. Tauber, M. J., C. A. Tauber, and S. Masaki. 1986. Seasonal Adaptations of Insects. Oxford University Press, New York.Google Scholar
  70. Tsumuki, H. 1980. Effect of anaerobiosis on glycerol formation in larvae of the rice stem borer, Chilo suppressalis Walker. Appl. Entomol. Zool. 15:52–59.Google Scholar
  71. Tsumuki, H. and K. Kanehisa. 1980. Effect of low temperature on glycerol and trehalose concentration in haemolymph of the rice stem borer, Chilo suppressalis Walker. Jap. J. Appl. Entomol. Zool. 24:189–193.CrossRefGoogle Scholar
  72. Tsumuki, H. and K. Kanehisa. 1981. Effect of JH and ecdysone on glycerol and carbohydrate contents in diapausing larvae of the rice stem boer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 16:7–15.Google Scholar
  73. Tsutsui, H., Y. Hirai, K. Honma, K. Tanno, K. Shimada, and S. F. Sakagami. 1988. Aspects of overwintering in the cabbage armyworm, Mamestra hrassicae (Lepidoptera: Noctuidae) I. Supercooling points and contents of glycogen and trehalose in pupae. Appl. Entomol Zool. 23:52–57.Google Scholar
  74. Tucic, N. 1979. Genetic capacity for adaptation to cold resistance at different developmental stages of Drosophila melanogaster. Evolution 33:350–358.CrossRefGoogle Scholar
  75. Wood, F. E., Jr. and J. H. Nordin. 1976. Studies on the low temperature induced biogenesis of glycerol by adult Protophormia terranovae. J. Insect Physiol. 22:1665–1673.CrossRefGoogle Scholar
  76. Woude, H. A. van der, and H. A. Verhoef. 1988. Reproductive diapause and cold hardiness in temperate Collembola Orchesella cincta and Tomocerus minor. J. Insect Physiol. 34:387–392.CrossRefGoogle Scholar
  77. Wyatt, G. R. and W. L. Meyer. 1959. The chemistry of insect haemolymph. III. Glycerol. J. Gen. Physiol. 42:1005–1011.CrossRefGoogle Scholar
  78. Yaginuma, T. and O. Yamashita. 1977. Changes in glycogen, sorbitol and glycerol content during diapause of the silkworm eggs. J. Sericult, Sci. Jap. 46:5–10.Google Scholar
  79. Yaginuma, T. and O. Yamashita. 1986. Malate-aspartate cycle as an effective hydrogen shuttle at the termination of diapause in the eggs of Bombyx mori. Insect Biochem. 16:677–685.CrossRefGoogle Scholar
  80. Yamashita, O. and K. Hasegawa. 1985. Embryonic diapause. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 1, eds. G. A. Kerkut and L. I. Gilbert, pp. 407–434. Pergamon Press, Oxford.Google Scholar
  81. Young, S. R. and W. Block. 1980. Experimental studies on the cold tolerance of Alaskozetes antarcticus. J. Insect Physiol. 26:189–200.CrossRefGoogle Scholar
  82. Zachariassen, K. E. and A. Pasche. 1976. Effect of anaerobiosis on the adult cerambycid beetle, Rhagium inquisitor L. J. Insect Physiol. 22:1365–1368.CrossRefGoogle Scholar
  83. Zaslavski, V. A. 1988. Insect Development: Photoperiodic and Temperature Control. Springer-Verlag, Berlin.Google Scholar
  84. Ziegler, R., M. Ashida, A. M. Fallon, L. T. Wimer, S. S. Wyatt, and G. R. Wyatt. 1979. Regulation of glycogen Phosphorylase in fat body of Cecropia silkmoth pupae. J. Comp. Physiol. 131:321–332.Google Scholar

Copyright information

© Chapman and Hall 1991

Authors and Affiliations

  • David L. Denlinger

There are no affiliations available

Personalised recommendations